
 1

Monitoring Data Archives for Grid Environments

Jason Lee, Dan Gunter, Martin Stoufer, Brian Tierney
Lawrence Berkeley National Laboratory

Abstract

Developers and users of high-performance distributed systems often observe performance problems such as unex-
pectedly low throughput or high latency. To determine the source of these performance problems, detailed
end-to-end monitoring data from applications, networks, operating systems, and hardware must be correlated
across time and space. Researchers need to be able to view and compare this very detailed monitoring data from a
variety of angles. To address this problem, we propose a relational monitoring data archive that is designed to effi-
ciently handle high-volume streams of monitoring data. In this paper we present an instrumentation and monitor-
ing event archive service that can be used to collect and aggregate detailed end-to-end monitoring information
from distributed applications. This archive service is designed to be scalable and fault tolerant. We also show how
the archive is based on the “Grid Monitoring Architecture” defined by the Global Grid Forum.

1.0 Introduction
Developers and users of high-performance distributed systems often observe unexpected performance problems.

It can be difficult to track down the cause of these performance problems because of the complex and often indirect
interactions between the many distributed system components. Bottlenecks can occur in any of the components
through which the data flows: the applications, the operating systems, the device drivers, the network interfaces,
and/or in network hardware such as switches and routers.

In previous work we have shown that detailed application monitoring is extremely useful for both performance
analysis and application debugging [30][2][29]. Consider the use-case of monitoring some of the High Energy Phys-
ics (HEP) Grid projects [21][14][9] in a Data Grid environment. These projects, which will handle hundreds of ter-
abytes of data, require detailed instrumentation data to understand and optimize their data transfers. For example, the
user of a Grid File Replication service [3][4] notices that generating new replicas is taking much longer than it did last
week. The user has no idea why performance has changed -- is it the network, disk, end host, GridFTP server, Grid-
FTP client, or some other Grid middleware such as the authentication or authorization system?

To determine what changed, one needs to analyze monitoring data from hosts (CPU, memory, disk), networks
(bandwidth, latency, route), and the FTP client and server programs. Depending upon the application and systems
being analyzed, from days to months of historical data may be needed. Sudden changes in performance might be cor-
related to other recent changes, or may turn out to occur periodically in the past. In order to spot trends and interac-
tions, the user needs to be able to view the entire dataset from many different perspectives.

A relational database that supports SQL [25] is an excellent tool for this type of task. SQL provides a general and
powerful language for extracting data. For example, with SQL we can do queries such as:

• find the average throughput for the past 100 runs

• return all events for application runs that coincided with reports of network errors

• return all events for application runs where the throughput dropped below 10 Mbits/sec and CPU load was
over 90%

• return all host and network events during application runs that took over 30 minutes

• return all events for application runs that failed (reported an error or never completed) during the last week

• return all events for applications runs where the total execution time was more than 50% from the average time
for the past month

0-7695-1524-X/02 $17.00 (c) 2002 IEEE

 2

Over the past two years the Global Grid Forum’s Grid Performance Working Group [12] has worked to define
the “Grid Monitoring Architecture” (GMA) [28], which describes the major components of a Grid monitoring system
and their essential interactions. In this paper we show how the archive uses the GMA “producer” and “consumer”
interfaces to allow users to active the monitoring and retrieve the data.

 We also address the scalability issues inherent to aggregating monitoring data in a central archiving component.
The archive must be able to easily handle high-speed bursts of instrumentation results, in order to avoid becoming a
bottleneck precisely when the system is most loaded.

2.0 Related Work
There are several application monitoring systems, such as Pablo [22], AIMS [32], and Paradyn [19]. However

these systems do not contain archival components. One of the first papers to discuss the use of relational databases for
application monitoring was by Snodgrass [24], who developed a relational approach to monitoring complex systems
by storing the information processed by a monitor into a historical database. The Global Grid Forum Relational Data-
base Information Services research group is advocating the use of relational models for storing monitoring data, and
this group has produced a number of documents, such as [5][10] and [8].

A current project that includes a monitoring archive is the Prophesy performance database [31]. Prophesy col-
lects detailed pre-defined monitoring information at a function call level. The data is summarized in memory and sent
to the archive when the program completes. This means that Prophesy does not need to be concerned with efficient
transfer of the results. In contrast, our system for analyzing distributed applications, called NetLogger (and described
below), provides a toolkit for user-defined instrumentation at arbitrary granularity. Typically this generates far too
much data to hold in memory, so the data must be streamed to a file or socket. This means that our archive architec-
ture must handle much more data that the Prophesy system. In addition, Prophesy includes modeling and prediction
components, where our system does not.

The Network Weather Service team is currently adding an archive to their system, and the data model we are
using, described below, is derived from the NWS data model described in [26]. There are several other monitoring
systems that are based on the Global Grid Forum’s GMA, including CODE [23] and R-GMA [11]. R-GMA contains
an archive component, but does not appear to be designed to handle large amounts of application monitoring data.
Spitfire [16] is a web service front-end to relational databases, which could potentially be used for an event archive.

Activation
Service

event data
buffer

 3) reads events from disk
buffer and sends them to
archive consumer

Data Server
 (e.g. FTP)

4) reads events from
network and writes
to disk buffer

Monitoring Event
Receiver

monitoring
DB

event data
buffer

archive
feeder

5) reads events from disk
buffer and feeds them to SQL
database at a controlled rate

Event Archive

2) instrumented
application writes
events to disk buffer

network

Archive Service

Analysis Client 6) Get event data

1) Send request for
monitoring to
activation service

Figure 1: Monitoring Archive System Components

 3

3.0 Monitoring Components
The system described in this paper has four main monitoring components: the application instrumentation, which

produces the monitoring data; the monitoring activation service, which triggers instrumentation, collects the events,
and sends them to the requested destinations; the monitoring event receiver , which consumes the monitoring data and
converts the events to SQL records and writes them to a disk buffer; and the archive feeder, which loads the SQL
records into an event archive database. These components are illustrated in Figure 1. A previous paper focused on the
first two components [15], while in this paper, we focus on the last two components (section 5), and on how the
archive can be used for distributed system analysis.

In order for a monitoring system to be scalable and capable of handling large amounts of application event data,
none of the components can cause the pipeline to “block” while processing the data, as this could cause the applica-
tion to block while trying to send the monitoring to the next component. For example, instrumenting an FTP server
requires the generation of monitoring events before and after every I/O operation. This can generate huge amounts of
monitoring data, and great care must be taken to deal with this data in an efficient and unobtrusive manner.

Depending on the runtime environment, there
are several potential bottlenecks points in the flow of
event data. For example, a bottleneck might exist on
the network when sending monitoring events from
the producer to archive host. Another likely bottle-
neck is the insertion of events into the event archive
database. To avoid blocking, the system must imped-
ance-match slow data “sinks” with fast data
“sources” by buffering data to disk at all bottleneck
locations, as shown in Figure 2. This is similar to the
approach taken by the Kangaroo system for copying data files [27].

Therefore this system can handle a higher burst data rate than sustained data rate. If the sustained data rate is
faster than the slowest component then the disk buffers will eventually fill and the pipeline will block. However very
detailed monitoring information, such as before and after each I/O operation, is typically only needed occasionally.
For example, when a user wants to explore a particular performance issue. Most of the time coarse summary data is
sufficient. In other words, you don’t need to dust for fingerprints until a crime (in this case, the “crime” of poor per-
formance) has been committed. Using our monitoring archive architecture, the slower components will not block the
pipeline, but only add some latency as the data waits in a disk buffer for processing.

4.0 Previous Work
The system described in this paper is built upon two components: GMA and NetLogger. The GMA provides a

high-level framework, characterizing system components as “consumers” or “producers” that can search for each
other, and subscribe or query for data. NetLogger provides the plumbing for the system, sending timestamped items
of data, or events, efficiently and reliably between components. In this section, we describe NetLogger and GMA and
their relationship to each other.

4.1 NetLogger Toolkit

At Lawrence Berkeley National Lab we have developed the NetLogger Toolkit [30], which is designed to moni-
tor, under actual operating conditions, the behavior of all the elements of the application-to-application communica-
tion path in order to determine exactly where time is spent within a complex system. Using NetLogger, distributed
application components are modified to produce timestamped logs of “interesting” events at all the critical points of
the distributed system. Events from each component are correlated, which allows one to characterize the performance
of all aspects of the system and network in detail.

All the tools in the NetLogger Toolkit share a common log format, and assume the existence of accurate and syn-
chronized system clocks. The NetLogger Toolkit itself consists of four components: an API and library of functions
to simplify the generation of application-level event logs, a set of tools for collecting and sorting log files, an event
archive system, and a tool for visualization and analysis of the log files. In order to instrument an application to pro-
duce event logs, the application developer inserts calls to the NetLogger API at all the critical points in the code, then

Event Data
Network

Disk

Database

Disk

Potential network
bottleneck, so buffer
events on disk

Potential bottleneck
at DB insert, so
buffer events on disk

Figure 2: Bottleneck Points

 4

links the application with the NetLogger library. We have found that for this type of distributed systems analysis,
clock synchronization of roughly 1 millisecond is required, and that the NTP [20] tools that ship with most Unix sys-
tems (e.g.: ntpd) can provide this level of synchronization.

We have found exploratory, visual analysis of the log event data to be the most useful means of determining the
causes of performance anomalies. The NetLogger Visualization tool, nlv, has been developed to provide a flexible
and interactive graphical representation of system-level and application-level events

Figure3 shows sample nlv results, using a remote
data copy application. The events being monitored are
shown on the Y-axis, and time is on the X-axis. CPU
usage and TCP Retransmission data are logged along
with application events. Each related set of events, or
lifeline, represents one block of data, and one can easily
see that occasionally a large amount of time is spent
between Server_Send_Start and Client_Read_Start,
which is the network data transfer time. From this plot it
is easy to see that these delays are due to TCP retrans-
mission errors on the network (see BytesRetrans in the
figure). NetLogger’s ability to correlate detailed applica-
tion instrumentation data with host and network monitor-
ing data has proven to be a very useful tuning and
debugging technique for distributed application develop-
ers.

We recently added to NetLogger an efficient self-describing binary wire format, capable of handling over
600,000 events per second [15]. This means that we can handle over 6000 events per second with only a one percent
CPU perturbation of the application. We have also recently added several other new features to NetLogger, including
an activation mechanism, and fault tolerance support.

The NetLogger API has a new trigger function that tells the library to check, at user-specified intervals, for
changes to the log destination. Two types of triggers are provided: a file trigger that scans a configuration file, and an
activation trigger that connects to a special component called the activation service daemon via HTTP, allowing users
to activate various levels of NetLogger instrumentation by sending activation requests to the activation service. Both
of these mechanisms allow users to dynamically change NetLogger’s behavior inside of a running application. This is
very useful for long-lived processes like file servers, which may only occasionally need fine-grained instrumentation
turned on.

Fault tolerance is provided through the NetLogger reconnect feature. Using a single API call, the user specifies a
“backup” destination for the data, and a reconnect interval. If the primary NetLogger connection fails, the library will
transparently begin writing data to the backup location and checking at the given interval to see if the primary connec-
tion comes back up. If the primary connection comes back up, NetLogger will start writing data there again, after
(optionally) sending the backed-up data first.

These features help make NetLogger’s event channel a robust, efficient, and flexible transport layer protocol for
GMA, described below.

4.2 Grid Monitoring Architecture (GMA)

We have helped lead a Global Grid Forum (GGF) effort to defined a highly scalable architecture for Grid moni-
toring, called the Grid Monitoring Architecture , or GMA. This work has taken place in the GGF Performance and
Information Area, which also has groups working to standardize the protocols and architectures for the management
of a wide range of Grid monitoring information, including network monitoring.

The prime motivation of the GMA is the need to scalably handle dynamic performance information. In some
models, such as the CORBA Event Service [6], all communication flows through a central component, which repre-
sents a potential bottleneck in distributed wide-area environments. In contrast, GMA performance monitoring data
travels directly from the producers of the data to the consumers of the data. In this way, individual producer/consumer
pairs can do “impedance matching” based on negotiated requirements, and the amount of data flowing through the

CPU_SYS

CPU_USER

CPU_TOTAL

Server_Send_Header

Server_Header_Sent

Server_Send_Data

Server_Data_Sent

Client_Read_Start

Client_Read_End

BytesRetrans

29 30 31 32 33 34

NetLogger Visualization

dpsslx02.lbl.gov dpsslx03.lbl.gov

X X X X

Time (Seconds)
34

Server_Send_Start

Figure 3: Sample NetLogger Results

 5

system can be controlled in a precise and localized fashion. The design also allows for replication and reduction of
event data at intermediate components acting as caches or filters.

In the GMA, the basic unit of monitoring data is called an event. An event is a named, timestamped, structure that
may contain one or more items of data. This data may relate to one or more resources such as memory or network
usage, or be application-specific data like the amount of time it took to multiply two matrices. The component that
makes the event data available is called a producer, and a component that requests or accepts event data is called a
consumer . A directory service is used to publish what event data is available and which producer to contact to request
it.

The GMA architecture supports both a subscription model and a request/response model. In the former case,
event data is streamed over a persistent “channel” that is established with an initial request. In the latter case, one item
of event data is returned per request.

The GMA architecture has only three components: the
producer, consumer, and directory service. This means that
only three interfaces are needed to provide interoperability,
as illustrated in Figure 4.

The directory service contains only metadata about the
performance events, and a mapping to their associated pro-
ducers or consumers. In order to deliver high volumes of
data and scale to many producers and consumers, the direc-
tory service is not responsible for the storage of event data
itself.

A consumer requests and/or receives event data from a
producer. In order to find a producer that provides desired
events, the consumer can search the directory service. A
consumer that passively accepts event data from a producer
may register itself, and what events it is willing to accept, in
the directory service.

A producer responds to consumer requests and/or sends event data
to a consumer. A producer that accepts requests for event data will regis-
ter itself and the events it is willing to provide in the directory service. In
order to find a consumer that will accept events that it wishes to send, a
producer can search the directory service.

A producer and consumer can be combined to make what is called a
producer/consumer pipe. This can be used, for example, to filter or
aggregate data. For example, a consumer might collect event data from
several producers, and then use that data to generate a new derived event
data type, which is then made available to other consumers, as shown in
Figure5. More elaborate filtering, forwarding, and caching behaviors
could be implemented by connecting multiple consumer/producer pipes.

4.3 Combining NetLogger and GMA
In our implementation of the GMA, we have separated the control and

data channels. SOAP messages are used for the control channel, and NetLogger serves as the “data channel” to
transfer events between producers and consumers. Separating the data channel and control channel semantics is a
standard mechanism used by programs like FTP to provide the ability to set low latency TCP options on the control
channel, while setting high throughput TCP options on the data channel. The binary NetLogger wire format described
in [15] is very easily parsed, providing an efficient data transport protocol for monitoring events. We use SOAP
messages to exchange the subscribe, unsubscribe, or query parameters. SOAP is the emerging standard for
exchanging messages in a Web Services environment, is quickly becoming the de-facto standard for transferring
structured data, and as such seemed a good candidate for low bandwidth control messages.

event
data

Consumer
event publication

information

Producer

Directory
Service

event publication
information

Figure 4: Grid Monitoring Architecture
Components

event data

producer

Monitoring Service X

Producer Interface

Consumer Interface

consumer

producer

Figure 5: GMA Consumer/Producer
Pipes

 6

4.4 Use of GMA in the Monitoring Archive

The GMA provides a common framework for structuring the interactions between the user and the activation ser-
vice, event receiver, and archive service components (described in Section 3, and shown in Figure 1). In GMA terms,
the activation service is a producer, the event receiver is a consumer, and the archive service is a producer. When the
user is requesting activation from the activation service, or querying the archive service, the user is in the role of a
GMA consumer.

To illustrate this, consider the process
of sending monitoring events for a file
transfer to the archive, illustrated in the top
half of Figure 6. First the user searches the
directory service for the appropriate
archive and activation service (or this is
configured manually). Then the user sub-
scribes to the activation service, indicating
that results should be sent to the archive.
The user is a consumer asking for events
from the activation service producer, and
directing the results to another consumer,
the archive. The activation service will then
send monitoring data directly to the
archive. The archive can then register in the directory service some metadata about these events.

The bottom half of Figure6 illustrates the process of retrieving data from the event archive. First the user
searches the directory service for an archive containing events of interest. The user is again a consumer, but this time
the archive is a producer of events. Then the user does a query to the event archive, embedding, for example, some
SQL statements into the request, and receives their desired information as a response.

Using the GMA interfaces, we can provide a coherent framework for the series of interactions necessary to acti-
vate, archive, and retrieve event data.

5.0 Monitoring Event Receiver and Archive Feeder
The monitoring event receiver , shown in Figure 1, reads monitoring events from the network and writes them,

unparsed, to disk. The archive feeder then asynchronously parses these disk files and loads them into the database.
This design has several advantages over a single component that loads the data as it arrives. First, the event receiver is
extremely fast and light-weight, as it does little more than copy bytes off the network. Second, a partial or total failure
of the database will not affect the event receiver as long as there is enough disk space to buffer the data until it is
restarted. Finally, the system is easier to maintain because each component can be separately upgraded and restarted.

For efficiency, data is loaded in batches into the database using the SQL load command. In order to maintain
good interactivity for database queries, we wanted to keep any individual database load, which can seriously impact
query time, to take about one second. We ran a few tests and discovered that for our particular database setup, we
need to break up the incoming data stream into disk files of 2500 events each. This value will vary based on the type
of database on other type of hardware being used.

This setup allows us to maintain database interactivity regardless of the speed at which the data arrives. It also
allows us to control server load, and provide a degree of fault tolerance, as all data will continue to be buffered on
disk if the database server is down. This setup also allows scalability by simply adding more disk space as needed for
the database and temporary files.

 Even with the incoming data reduced to a trickle, the database will not be able to execute SQL queries or loads
efficiently if the data model is inappropriate (or poorly implemented in the database tables). Our data model,
described next, is simple but also performs well for common types of queries.

subscribeconsumer consumer

user activation
service archive

events
producer

subscribe or query

consumer

user archive

producerevents

directory service

search

search

register

Figure 6: GMA Interactions

 7

6.0 Data Model and Data Archive
Our data model, shown in Figure7, is based

on NWS archive work [26]. It is very simple: we
describe each event with a name, timestamp,
“main” value, “target”, program name, and a
variable number of “secondary” string or
numeric values. The target consists of a source
and destination IP address, although the destina-
tion address may be NULL. There is a
many-to-one relationship from events to event
types, and events to event targets. Therefore
these entities can be put into separate indexed
tables to allow fast mapping and searching of
events. Figure8 shows sample events for TCP
throughput (from iperf) and application monitoring (from a GridFTP server) represented in this model.

We have optimized the actual database tables somewhat from the general model described above, both for data-
base size and speed. These optimizations are based on common sense and an intuition of the most frequent types of
queries. For example, the “secondary” values are subdivided into two tables, one for strings and one for numbers,
because storing both in the same table would waste space and slow down indexing. We use the primary key in the
event table to index against the string and number tables. This allows us to quickly reconstruct the original events.

The usefulness of this data model hinges on the presence of globally unique, consistent names for each event of
interest. It does not require that the events all fit into one unified schema namespace such as the Desktop Management
Task Force Common Information Model (CIM) [7], which is a common data model of an implementation-neutral
schema for describing overall management information in a network/enterprise environment. In our simple data
model, it only matters that the event ‘TCP.throughput’ is not sometimes called ‘throughput-TCP’. There must be a
one to one mapping of events to names. On the other hand there is no unified hierarchical which ties events together,
which allows all events to be treated in a completely general manner. In other words, the monitoring events CPU.user
and TCP.throughput are parsed and stored identically.

The unifying abstraction is the same one used by NetLogger: timestamped name-value pairs. It is no coincidence
that the atomic events expected by the database have the same complexity as those generated by NetLogger. Although
it is certainly possible to send and parse more complex data structures, our general approach is to break complex
structures into “atomic events” of a single timestamp and value, and send and parse these atomic events as efficiently
as possible. In monitoring and application instrumentation, the events of interest are generally simple enough that
they can be modeled with only a few atomic events. Moreover, in this normalized form, the data can be transferred
between databases, visualization tools, and filtering components, efficiently and easily.

7.0 Results
The following simple example demonstrates the power of a relational archive for analyzing monitoring data.

Consider the case of unexplained periodic dips in network throughput. To understand the cause, we construct a query
to find all events that happened during any time when the network throughput was below 1/5 of the average on that

Event

Target

source IP address
destination IP address

type
timestamp
program name

main value
2nd value 1, name
2nd value 1,val

target

...

Name

Event Type

Figure 7: Event Data Model

Event

Target

Event Type
type =
timestamp =
20020401123856.25468Z
program = iperf
target =
value: 88.7
2nd value name =
WindowSize
2nd value val= 256000

source IP address =
10.32.45.54
destination IP address =
10.32.45.99

TCP.throughput

Event

Target

Event Type
type =
timestamp =
20020401123856.25468Z
program = GridFTP
target =
value: 65536
2nd value name =
2nd value val=

source IP address =
10.32.45.54
destination IP address =
10.32.45.99

FTP.EndReadBlock

Figure 8: Example events (Iperf and GridFTP)

 8

path. This query is simply a matter of extracting links with bandwidth measurements, which are already defined by a
type “bandwidth” in the database. Then in SQL, using the AVG() command, we compute across these links the aver-
age of all the ‘bandwidth’ events. This now forms a baseline for link bandwidth. SQL can now supply us with all of
the dips in the bandwidth over the time period of interest by performing a comparison of bandwidth values against
this baseline. Finally, we extract all events within one minute of one of these bandwidth dips on both the sending and
receiving hosts.

The results of these queries are graphed with
nlv, the NetLogger analysis tool, shown in Figure9.
Throughput values are from a long Iperf [17] test.
This graph clearly shows that there was a spike of
CPU usage at the same time the network throughput
dropped. This indicates that the host was CPU
bound, and not able to handle interrupts from the
network adaptor fast enough to prevent a drop in
throughput.

Another example involves a longer-term exam-
ination of Iperf throughput between a set of hosts.
We used SQL to extract the minimum, maximum,
mean, and standard deviation of the throughput
over several days. We found a high standard devia-
tion, and on further analysis discovered that the throughput had a bi-modal distribution, as shown in Figure 10. To see
if the bi-modal distribution was due to TCP slow start issues on high bandwidth-delay product networks that Floyd
describes in [12], we then queried the archive to extract information on all TCP retransmits that occurred during all
Iperf runs. We then plotted the time of the first TCP retransmit together with the throughput of the run, shown in
Figure11. In this plot we see that there appears to be at least some correlation between the time of the first retransmit
and the overall throughput of the run. However this correlation does not appear to be strong enough to fully explain
why Iperf performance is bi-modal, and further analysis is required.

These examples demonstrate some of the power of a relational
archive of monitoring results, which allows one to explore issues
such as this.

Understanding GridFTP Behavior

Another example is an analysis of GridFTP performance data.
We are monitoring and archiving the following information:

• GridFTP server: start and end events for file transfers,
including all parameters associated with the transfer, such as
file size, TCP buffer size, number of parallel streams, and so
on.

• CPU and memory events, sampled every second
during the duration of the FTP file transfers, on both
the client and server.

• TCP data, from the web100 kernel’s TCP Extended
Statistics MIB [18], including the number TCP
retransmissions, congestion window size, and round
trip time. This data is also one-second samples dur-
ing the duration of a file transfer.

We then queried the archive for all information on FTP
transfers between two hosts where the number of parallel
streams and TCP buffer size were equivalent. We then
looked for transfers that were “unusual”, e.g., where the
data throughput for the transfer was more than two standard deviations from the mean. We then requested from the

Bandwidth

CPUload

0 50 100 150 200 250 300 350 400 450 500

dpss2Time (seconds)

100%

0%

0

100 Mbps

Figure 9: NLV Visualization of Network Loss vs.
CPU Load

0

2

4

6

8

10

12

0 12 24 36 48 60 72 84 96 108 120 132 144

Iperf Bandwidth Histogram

Throughput (Mbits/sec)

co
un

t

Figure 10: Histogram of Iperf throughput

Figure 11: Time till 1st retransmit in Iperf

Throughput

80000 90000 100000 110000 120000

ORNL-LBNL

.1 sec

.4 sec
0 Mbps

100 Mbps

Time (Seconds)

Time till
1st TCP
retransmit

 9

archive all CPU, memory, and TCP information during those transfer intervals. Figure12 shows a subset of these
results graphed in nlv. The upper part of the graph shows CPU idle time and the lower part shows GridFTP through-
put. The dip in the graph indicates high CPU utilization. During this unusually high CPU activity on the client host,
the FTP transfers had low throughput.

This example also shows the utility of a relational
archive of monitoring results, which allows one to find col-
orations such as this.

Scalability Tests
In order to test the scalability of the architecture, we ran

the following test. We sent 26,000 events/second to the
monitoring event receiver for one hour. During this time, a
total of 4.5 GB (~100 million records) of events were
buffered on disk, and these files took a total of 4 hours to
load these events into the archive database. (These tests
were done using a mySQL database on a 800 MHz
Pentium system runing Linux 2.4.) As described above, we
are loading only 2500 events at a time to ensure that database queries are not inordinately degraded. Clearly if you
had the requirement of archiving 26,000 events per second on a regular basis, you would use a more powerful
database system. However this demonstrates that this architecture can handle bursts of events at these rates without
blocking and without affecting database query time.

8.0 Conclusion
In this paper we have explained how a relational monitoring event archive is useful for correlating events and

understanding performance problems in distributed systems. A relational database with historical data allows for the
establishment of a baseline of performance in a distributed environment, and finding events that deviate from this
baseline is easy with SQL queries. We have also shown that an architecture built around the Grid Monitoring Archi-
tecture (GMA) can scale in a Grid environment. Our architecture addresses the scalability issues inherent to aggregat-
ing monitoring data in a central archiving component. This archive handles high-speed bursts of instrumentation
results without becoming a bottleneck.

9.0 Acknowledgments
We want to thank members of the Global Grid Forum Discovery and Monitoring Event Description Working

Group, especially Martin Swany, for their help in defining the data model we are using for monitoring events. This
work was supported by the Director, Office of Science. Office of Advanced Scientific Computing Research. Mathe-
matical, Information, and Computational Sciences Division under U.S. Department of Energy Contract No.
DE-AC03-76SF00098. This is report no. LBNL-50216.

10.0 References
[1] Allcock B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., et.al. Secure, Efficient Data Transport and Replica Manage-

ment for High-Performance Data-Intensive Computing. IEEE Mass Storage Conference, 2001.
[2] Bethel, W., B. Tierney, J. Lee, D. Gunter, S. Lau. Using High-Speed WANs and Network Data Caches to Enable Remote

and Distributed Visualization. Proceeding of the IEEE Supercomputing 2000 Conference, Nov. 2000.

[3] Cancio, G., S. Fisher, T. Folkes, F. Giacomini, W. Hoschek, D. Kelsey, B. Tierney. The DataGrid Architecture.
http://grid-atf.web.cern.ch/grid-atf/doc/architecture-2001-07-02.pdf

[4] Chervenak, A., et. al., Giggle: A Framework for Constructing Scalable Replica Location Services , Proceeding of the IEEE
Supercomputing 2002 Conference, Nov. 2002.

[5] Coghlan, B., A case for Relational GIS/GMA using Relaxed Consistency, GGF Informational Draft GWD-GP-11-1,
http://www.gridforum.org/1_GIS/RDIS.htm

FTP_INFO_TPUT

CPU_IDLE

5000 10000 15000 20000 25000 30000 35000 40000 45000

 ORNL-LBL

X X X X X

X X

X X

X

X X X

1 - 100%

0 - 30 MB

Time (seconds)

Figure 12: GridFTP and CPU usage

 10

[6] CORBA. Systems Management: Event Management Service. X/Open Document Number: P437, http://www.open-
group.org/ onlinepubs/008356299/

[7] Desktop Management Task Force Common Information Model (CIM), http://www.dmtf.org/standards/standard_cim.php
[8] Dinda, P. and B. Plale. A Unified Relational Approach to Grid Information Services. Grid Forum Informational Draft

GWD-GIS-012-1, http://www.gridforum.org/1_GIS/RDIS.htm

[9] European Data Grid Project http://www.eu-datagrid.org/
[10] Fisher, S., Relational Model for Information and Monitoring , GGF Informational Draft GWD-GP-7-1, http://www.gridfo-

rum.org/1_GIS/RDIS.htm

[11] Fisher, S. Relational Grid Monitoring Architecture Package, http://hepunx.rl.ac.uk/grid/wp3/releases.html
[12] Floyd, S., Limited Slow-Start for TCP with Large Congestion Windows, IETF draft, work in progress, May 2002. URL:

http://www.icir.org/floyd/papers/draft-floyd-tcp-slowstart-00b.txt.

[13] Global Grid Forum (GGF): http://www.globalgridforum.org/
[14] GriPhyN Project: http://www.griphyn.org/

[15] Gunter, D., B. Tierney, K. Jackson, J. Lee, M. Stoufer, Dynamic Monitoring of High-Performance Distributed Applica-
tions, Proceedings of the 11th IEEE Symposium on High Performance Distributed Computing, July 2002.

[16] Hoschek, W., G. McCance, Grid Enabled Relational Database Middleware, Global Grid Forum Informational Draft
http://www.gridforum.org/1_GIS/RDIS.htm

[17] Iperf, NLANR, http://dast.nlanr.net/Projects/Iperf/
[18] Mathis, M., R. Reddy, J. Heffner and J. Saperia, TCP Extended Statistics MIB, IETF draft, February, 2002,

http://www.ietf.org/internet-drafts/ draft-ietf-tsvwg-tcp-mib-extension-00.txt

[19] Miller, B., Callaghan, M., et al., The Paradyn parallel performance measurement tools, IEEE Computer, Vol. 28 (11), Nov.
1995.

[20] Mills, D., Simple Network Time Protocol (SNTP), RFC 1769, University of Delaware, March 1995.
http://www.eecis.udel.edu/~ntp/

[21] Particle Physics Data Grid (PPDG): http://www.ppdg.net/

[22] Ribler, R., J. Vetter, H. Simitci, D. Reed. Autopilot: Adaptive Control of Distributed Applications. Proceedings of the 7th
IEEE Symposium on High-Performance Distributed Computing, Chicago, IL, July 1998.

[23] Smith, W. A Framework for Control and Observation in Distributed Environments . NAS Technical Report Number:
NAS-01-006, http://www.nas.nasa.gov/~wwsmith/

[24] Snodgrass, R., A Relational Approach to Monitoring Complex Systems , ACM Transactions on Computer Systems, Vol. 6,
No. 2 (1988), 157-196.

[25] SQL. Database Language SQL. ANSI X3.135-1992

[26] Swany, M. and R. Wolski, Representing Dynamic Performance Information in Grid Environments with the Network
Weather Service, Proceeding of the 2nd IEEE International Symposium on Cluster Computing and the Grid, Berlin, Ger-
many, May 2002

[27] Thain, D., Jim Basney, Se-Chang Son, Miron Livny. The Kangaroo Approach to Data Movement on the Grid. Proceedings
of the Tenth IEEE Symposium on High Performance Distributed Computing, San Francisco, California, August 2001

[28] Tierney, B., R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, M. Swany. A Grid Monitoring Service Architecture. Glo-
bal Grid Forum White Paper. http://www-didc.lbl.gov/GridPerf/

[29] Tierney, B., D. Gunter, J. Becla, B. Jacobsen, D. Quarrie. Using NetLogger for Distributed Systems Performance Analysis
of the BaBar Data Analysis System . Proceedings of Computers in High Energy Physics 2000 (CHEP 2000), Feb. 2000.

[30] Tierney, B., W. Johnston, B. Crowley, G. Hoo, C. Brooks, D. Gunter. The NetLogger Methodology for High Performance
Distributed Systems Performance Analysis . Proceeding of IEEE High Performance Distributed Computing, July 1998,
http://www-didc.lbl.gov/NetLogger/

[31] Wu, X., Taylor, V., et. al., Design and Development of Prophesy Performance Database for Distributed Scientific Applica-
tions, Proc. the 10th SIAM Conference on Parallel Processing for Scientific Computing, Virginia, March 2001.

[32] Yan, L., Sarukkai, S., and Mehra, P., Performance measurement, visualization and modeling of parallel and distributed
programs using the AIMS toolkit, Software Practice and Experience, Vol. 25 (4), April 1995.

