

Figure 1: Segregated nature of WANs, with network devices
grouped in layers managed by their forwarding technology.

Traffic Optimization in Multi-Layered WANs using SDN

Henrique Rodrigues1, Inder Monga2, Abhinava Sadasivarao3, Sharfuddin Syed3,
Chin Guok2, Eric Pouyoul2, Chris Liou3, Tajana Rosing1

1University of California, San Diego
La Jolla, CA, USA

2Energy Sciences Network
Berkeley, CA, USA

3Infinera Corporation
Sunnyvale, CA, USA

Abstract — Wide area networks (WAN) forward traffic

through a mix of packet and optical data planes, composed by a
variety of devices from different vendors. Multiple forwarding
technologies and encapsulation methods are used for each data
plane (e.g. IP, MPLS, ATM, SONET, Wavelength Switching).
Despite standards defined, the control planes of these devices are
usually not interoperable, and different technologies are used to
manage each forwarding segment independently (e.g. OpenFlow,
TL-1, GMPLS). The result is lack of coordination between layers
and inefficient resource usage. In this paper we discuss the design
and implementation of a system that uses unmodified OpenFlow
to optimize network utilization across layers, enabling practical
bandwidth virtualization. We discuss strategies for scalable traf-
fic monitoring and to minimize losses on route updates across
layers. A prototype of the system was built using a traditional
circuit reservation application and an unmodified SDN control-
ler, and its evaluation was performed on a multi-vendor testbed.

Keywords—Wide Area Network; Software-defined networking;
OpenFlow; Multi-layer, Virtual Networks, Traffic Engineering

I. INTRODUCTION
Increased adoption of cloud computing and global scale

distributed systems propel the growth of network demand
across the globe. Predictions are that the Internet will grow
significantly in the next few years, carrying Zettabytes of data
in 2017 [1]. Wide area networks (WAN) are at the core of the
global inter-network infrastructure, delivering several terabits
per second across thousands of large bandwidth capacity links.
These networks support a wide range of Internet services, and
are critical to the reliability and performance of the Internet.

The exodus of traditional applications to data centers and
the rise of large “Big Data” datasets contribute not only to
traffic growth but also to variable inter-data center traffic
demands. Traditional WAN management systems handle
demand variations by routing traffic through multiple network
paths, using solutions such as MPLS-TE, B4 [2] and SWAN
[3]. Multiple Optical Network Elements form the underlying
transport infrastructure for these paths, as they offer cost-
effective high bandwidth forwarding for interconnecting
globally distributed routers. The problem, however, is that
these optical nodes are often invisible to traffic engineering
(TE) systems. As a result, optimizations explored by routers or
systems such as B4 and SWAN are limited to a logical portion
of the network, which is mostly static. If the demand at the IP
layer grows beyond its limits, new optical paths need to be
created, and this might involve provisioning actions beyond the
capabilities of current systems. Furthermore, variable demands
under the current practice of static bandwidth allocation based
on peak usage is likely to result in siginificant resource wastage
as optical speeds evolve past 100Gbps [12].

Figure 1 depicts a segregated WAN, with multiple network
nodes spread across 3 management layers. The actual number
of independently managed layers can vary, depending not only
on forwarding technology, but also on the lack of
interoperability between systems orchestrating each segment.
In some cases, layers are even induced by carrier-customer
relationships, with some carriers also having other carriers as
customers [4]. Management segregation can also be present in
the same institution, with different layers operated by different
engineering teams [5]. This motivates WAN providers to
rethink how these networks are managed [4]: instead of
focusing on traffic engineering at each layer independently,
orchestration across layers becomes important to ensure low
operational overheads as well as high utilization of resources.

In this paper we present the design and implementation of
OSCARS-TE, a multi-layered traffic management application
designed to provide bandwidth on demand and ease TE across
segregated network data planes. We take advantage of the fact
that Optical Transport Elements and Transparent Optical
Switches are improving their programmability [9], and suggest
the use of a unified control plane (UCP) based on OpenFlow
(OF) to manage both packet and optical transport nodes.
Unlike previous approaches, which propose OF extensions to
handle particularities of the optical layer, OSCARS-TE does
not need any changes to the protocol. Instead, we propose a
new version of the Open Transport Switch (OTS) [9], which
maps the particularities of lower layer elements to the standard
OF protocol, allowing OSCARS-TE to manage traffic
allocation using SDN application logic.

The use of unmodified OpenFlow allows network opera-
tors to plug in traditional Software Defined Network (SDN)
controllers, re-using TE policies and management systems for
multiple forwarding layers. With global view of the network
across multiple layers and simple control interface, OSCARS-
TE can provide elastic management of available bandwidth to
eliminate performance problems. We discuss the challenges

and design decisions to perform multi-layered network opti-
mization, and evaluate an initial prototype of OSCARS-TE in
a multi-layer network composed by packet and optical
transport devices.

II. BACKGROUND AND MOTIVATION
The evolution of optical network speeds, from current

100Gbps towards Terabits per second in a few years, highlights
the need for flexible bandwidth allocation in the optical plane.
The traditional practice of static end-to-end resource allocation,
facing variable inter-data center WAN traffic demands [11],
can result in significant wastage of resources. Enabling
technologies exist in both the optical domain [12], as well as in
the packet switched domain [2][3]. Bridging the gap between
these two domains can enable application centric orchestration
of large bandwidth pipes, leading to cost-effective use of the
network infrastrcutre. The problem is that the legacy layered
infrastructure of WANs segregates resource provisioning and
management, imposing a few barriers for dynamic
orchestration across domains. Here we briefly describe the
reasons for curent network segregation.

1. Infrastructure
The lower layers of WANs are composed of Reconfigura-

ble Optical Add-Drop Multiplexers (ROADMs) interconnect-
ed by optical fibers, which are preferable over copper for long
distance transmissions due to their low propagation loss. They
carry digital information encoded into different optical wave-
lengths, with ROADMs routing wavelengths by filtering and
directing them to different fibers. These devices have no
knowledge of the actual application-level data streams modu-
lated into optical signals (i.e. IP routing, application demands),
and provide static amount of network resources between nodes
regardless of how much useful data is transmitted. Wave-
length-Division Multiplexing (WDM) enables cost-effective
high bandwidth by combining wavelengths into a single fiber.

Above we have the Optical Transport Layer, which is also
referred to as digital wrapper or optical channel wrapper. Here
network resources are provisioned as sets of optical cross con-
nects (XCON), defining optical circuits that interconnect two
other higher layer devices. Optical signals can be processed
based on electronic frames or optically, when done at higher
speeds. This layer allows further division of bandwidth avail-
able in single wavelengths with Time-Division Multiplexing
(TDM), usually in incremental steps from a basic unit such as
ODU0 [15]. This provides higher flexibility on resource allo-
cation compared to the physical layer.

Packet forwarding using IP/MPLS is at the top of the in-
frastructure, being responsible for most of the “dynamic” net-
work intelligence: routing, TE, and fault tolerance. The de-
tailed packet switched nature of this layer gives it the highest
level of flexibility; enabling traffic management at the level of
inter-application flows.

2. Network Management
Due to their different technology and resource provision-

ing, each layer has its own management interface, which are
usually non-interoperable [4][13]. The disparity between lay-

ers comes from their distinct purposes as they evolved over
time. Transport networks and long distance traffic forwarding
protocols evolved from telecommunication networks, with
goals such as reliable delivery and strict latency requirements,
both essential for reconstructing a live voice stream. This al-
lows efficient forwarding at high speeds with shallow buffers,
as switching is relatively simple and resources are often re-
served beforehand. In contrast, data networks were born as a
best-effort service, designed to tolerate delays, resource con-
tention and variable availability. Their unstructured nature
also requires features such as forwarding loops prevention and
modest sized buffers, which absorb demand variations.

Bandwidth provisioning multi-layered networks is usually
done in multiple steps (e.g. RSVP-TE, LMP, TDM circuits, IP
rules at routers) and involves multiple management interfaces
(e.g. TL-1, NETCONF, SNMP), as well as possible manual
provisioning needed for various devices [4]. TE and band-
width allocation in the packet layer is done after this step,
taking as input a static network graph. The need for bandwidth
allocation and orchestration across multiple devices has moti-
vated the design of unified control planes (UCP). A well-
known solution for the optical domain is the Generalized Mul-
ti-protocol Label Switching (GMPLS) protocol. However,
despite addressing some of these problems, GMPLS-based
control planes have not been widely deployed for multiple
reasons [13]. Most notably, carriers indicate strong preference
for a centralized solution [14].

A promising paradigm, successful in the packet layer, is
Software Defined Networking (SDN). It proposes a complete
separation of data and control planes, giving total control over
data plane forwarding decisions to a remote application, or a
SDN controller. The advantage is that network orchestration
can be done with global knowledge of the network state, ena-
bling globally optimal routing and TE decisions [1][3]. A
common control interface, such as the OpenFlow protocol, is
key to the success of SDN, providing a generic abstraction for
packet switched data planes. This enables coordination of de-
vices from multiple vendors using the same interface, elimi-
nating costs of integration development and vendor-induced
network segregation (“vendor-islands”).

OpenFlow extensions for optical data planes are explored
in previous works [5][6][7][9]. However, proposed changes
usually conflict with the generic OpenFlow control interfaces,
slowing down standardization and also their adoption by dif-
ferent vendors. Furthermore, the proliferation of vendor exten-
sions induces more segregation, resulting in reduced interop-
erability and extra development costs for integration.

The inexistence of a unified control protocol is not the on-
ly limiting factor for practical cross-layer orchestration. Traf-
fic engineering and route updates in multi-layered networks
are also different. One problem is the resource provisioning
time of the different layers. Packet switches are able to change
its data plane instantaneously, enabling multiple concurrent
route updates in short timescales [2][3]. Traditional ROADM
and mechanical-based optical switches were not designed for
such needs, and offer provisioning time orders of magnitude
slower than electronic based data planes [16]. Even when both

Figure 2: Experimental environment, multi-layer application modules and interactions between application and devices

optical and packet layers operate electronically, the interaction
of different forwarding technologies (such as Ethernet over
SONET or OTN) can induce link availability delays. There-
fore, careful handling of route updates across layers is neces-
sary to avoid performance degradation. We describe how we
solve this problem using planned multi-layer route updates in
§III and quantify the performance degradation in §IV.

The absence of a complete multi-layer UCP to orchestrate
segregated data planes motivated us to design and implement
OSCARS-TE, a system that enables practical elastic band-
width provisioning for multi-layer WANs. We also designed a
lightweight version of the Open Transport Switch [9] that al-
lows resource provisioning of optical transport nodes using
standard OpenFlow 1.0 without modifications.

III. ARCHITECTURE AND IMPLEMENTATION
The system design borrows multiple components from the

On-demand Secure Circuits and Reservation System
(OSCARS) [11], an open source circuit provisioning software
developed by ESnet and partners. We extended the original
application to build OSCARS-TE, adding dynamic traffic
monitoring, extensible topology management and elastic re-
source provisioning for effective cross layer resource optimi-
zation and orchestration. The architecture of the system is
depicted in Figure 2, with standard Floodlight as our current
SDN controller. However, before describing OSCARS-TE, we
first briefly discuss how optical network elements can be vir-
tualized and managed using unmodified OpenFlow.

1. Open Transport Switch using Standard OpenFlow
The common extensions that enable OF use for optical

network elements usually introduce new control messages to
indicate optical channel (OC) line rates and network element
identifications [5][9]. Despite requiring SDN controller modi-
fications, this pushes unnecessary responsibilities such as
timeslots availability tracking – which are usually lower layer
specific information – to the SDN controller.

Another approach is to map optical wavelengths into virtu-
al ports, and perform wavelength routing at the OF controller
[17]. The solution, however, is restricted to physical layer
ROADMs and devices that operate at wavelength granulari-
ties, excluding low granularity TDM switching and newer
higher speed optical technologies such as Nyquist DWDM
(super channels) from the set of possible interconnections.

Practical packet-optical integration requires a more general
approach for virtualization of optical layer. It should abstract

optical layer limitations and details, such as wavelengths,
modulation formats vs. optical reach and/or timeslots, provid-
ing a simple interface that is better understood by TE systems.

In our new version of OTS, we virtualize all possible cross
connections of optical network switches into virtual ports. All
ports of same switching granularity (e.g. ODU0) are grouped
into a virtual optical node, as shown in Figure 3. The switch
exposes virtual nodes as a full cross bar switch with a virtual
photonic cross-connect (PXC) of a specific bandwidth, which
is the actual resource unit understood by applications. This
gives the SDN controller a clear and simple view of the possi-
ble routes for traffic flows of a particular demand, independent
of wavelengths, line rates and/or time slots. The abstraction,
allows resource provisioning using traditional OF, as SDN
controllers already support such abstraction with the in_port
field in the OF match and the primitive output action. We di-
rect the reader to [9] for an extensive discussion on the im-
plementation of OTS. Our modifications affect only the ex-
ported interface, but uses similar architecture.

The abstraction can be applied to other optical switches,
such as ROADMs, making the OTS implementation general
enough to address optical networking elements operating in
different layers. It also permits resource partitioning to differ-
ent SDN controllers, similar to the service provided by
FlowVisor, by splitting virtual interfaces between additional
virtual nodes of same resource granularity. However, as in
FlowVisor, this task is not addressed by OpenFlow, but ac-
complished by an out-of-band protocol like OF_CONFIG.

2. System Overview
The high level algorithm of OSCARS-TE can be described

with three simple steps that obey the following control loop:

Figure 3: Optical Switch Virtualization using OTS: possible cross
connections with matching ODU are exposed as a single virtual
switch with a virtual PCX.

1. Monitor load on network devices every Ts seconds. In
case of a network event, the level of detail in network
monitoring is increased on nodes where the event start-
ed, in an attempt to determine its cause.

2. OSCARS-TE looks for possible optimizations, either by
providing extra resources or separating traffic flows
whose interaction can lead to poor network performance.

3. Once the optimization decision is determined, an opti-
mized cross layer path is requested to the OSCARS Path
Computation Engine (PCE). A route update plan, with
an ordered sequence of node updates, is computed and
executed to update the network state.

3. Automated Topology Discovery
One of the most important tasks performed by a SDN con-

troller is to keep track of the network topology. Most control-
ler tasks, such as routing, provisioning and fault recovery,
need topology information. This information allows prompt
network reconfiguration upon a failure with globally optimal
routing decisions. This is also an advantage of SDN over dis-
tributed network control, which usually needs various steps
and coordination messages to re-adapt the network state.

One of the challenges in implementing a multi-layered
SDN application is that there is no standard, generic way to
build a multi-layered topology graph. At the packet layer,
LLDP works well to find (logical) links between switches.
However, when it comes to optical interconnections (or the
packet/optical edges), any L2 mechanism fail. These packets
are transparent to optical nodes, leaving manual administrator
input - possibly aided by proprietary tools - as the only option.

We use multiple sources to build a multi-layered topology
graph. In the first step, we identify the connected packet
switched components of the network using LLDP. Once this
graph is constructed, the controller can scan all possible paths
exported by the OTS, cross connecting active ports with un-
known ends in the optical domain. A successful path intercon-
necting two packet switches generates a link state change OF
message, revealing the physical links in the topology graph.

This method works for modest-size sections of the net-
work, but it is not scalable. Therefore, the system can also
accept vendor-specific topology information for the optical
domain, and join the topology sources (both the dynamically
inferred and the statically provided) together to create a full
topology graph.

4. Scalable Traffic Monitoring
The main use for bandwidth on demand in the optical layer

has been fast restoration of connectivity in case of failures.
Other uses, such as rapid provisioning of bandwidth to appli-
cation-level services have been a challenge, because while the
optical layer has the resources, it lacks application level in-
formation, whereas in the packet layer, the situation is the
opposite. We tried to break this gap with OSCARS-TE by
collecting network-wide statistics and accomplishing rapid
provisioning based on application demands.

However, monitoring all application flows in the network
from a central controller is not scalable both to the server ag-
gregating traffic measurements as well as for the constant

polling of switch information. On a heavily loaded switch,
querying and transferring all flow level statistics might even
affect the performance of the control network. Even so, appli-
cation level traffic is necessary to break the gap between the
traditional static optical bandwidth allocation and elastic
bandwidth provisioning to meet application demands.

To overcome this dilemma, we designed a scalable traffic-
monitoring module that mitigates the need to keep constant
application level flow information. We mitigate the problem
by employing multiple network monitoring methods with dis-
tinct granularities of traffic information.

OTS can export virtual interface statistics using Open-
Flow. Packet devices also offer coarse-grained interface in-
formation through OpenFlow or SMNP counters. Fine-grained
traffic statistics can be retrieved via standard packet sampling.
Multiple packet switches support this feature, and export the
information using protocols such as sFlow or NetFlow.

We adopt a split model for network monitoring that lever-
age multiple solutions. OSCARS-TE restricts periodic moni-
toring probes to coarse-grained statistics, reducing data collec-
tion for periods of inactivity. We keep a moving average
counter for each monitored point to alleviate small short-lived
bursts of traffic. Case the processing of this information points
to undesirable network events, such as packet drops and/or
traffic patterns that might indicate a bottleneck, the system
changes the data collection method to retrieve more fine-
grained information. Such change in monitoring patterns,
however, is constrained to the sections of the network in-
volved in the network event. This enables the identification of
application flows that are contributing to spot network conges-
tion or that might require extra bandwidth.

In this initial implementation of OSCARS-TE, we use
OpenFlow and sFlow, when available, to collect traffic statis-
tics for interfaces and flows. Packet sampling can replace the
statistics collection of OpenFlow, providing similar flow level
information without the need for in hardware statistics coun-
ters. Some OpenFlow versions that support group entries can
also be used for packet sampling, eliminating the need for
sFlow support. We do not use such feature.

5. Demand inference and Elastic Bandwidth Allocation
Traditional WAN management systems, such as OSCARS,

perform point-to-point resource reservation based on user-
supplied demand. However, users might not have a complete
understanding of application needs, and static bandwidth allo-
cations lead to inefficient resource utilization when applica-
tions have variable demands.

Similar to previous systems, OSCARS-TE takes as input
user-supplied demand information as an indication of the
amount of resources to be reserved. However, it can manage
the resources statically or dynamically, with elastic resource
management. In the former, the system works as before, with
static guaranteed bandwidth offering predictable network per-
formance. The later avoids underutilization. In this case re
sources are reserved only as a form of admission control.
However, only the minimum amount of resources is provi-
sioned for connectivity and small flows (i.e. ODU0/2 connec-

tions). The system then dynamically adjusts resource provi-
sion according to measured demands.

For elastic bandwidth allocation, OSCARS-TE processes
the monitored traffic information looking for two types of
events, which we refer to as balanced demand growth and
unconstrained imbalance growth. The first happens due to
regular demand growth, usually as result of increasing number
of applications sharing the allocated resources with each of
them having approximately the same network demand. In this
case, there is only one solution: provide extra bandwidth. This
can be done as the measured demand exceeds a certain estab-
lished threshold, such as 70% of capacity.

The second event is less obvious: moving large amounts of
data between data centers can easily make a single application
fill a multi-gigabyte link. This is the case in WANs such as
ESnet, which carry bursts of large scientific data transfers with
regular traffic through the same path [11]. When links carry
such a mix of small intermittent flows from a few applications
and high demand flows coming from other application collo-
cated in the same site, behind an access router (i.e. in the same
cluster, data center, research center, etc.), contention for net-
work resources can cause performance degradation, and con-
sequently, low link utilization. The interaction between these
flows triggers the TCP congestion control for all flows. In an
attempt to maintain fairness between flows, larger flows must
reduce their bandwidth to match the bandwidth attributed to
small flows. If the smaller flows vanish after the resources
were equally shared, the remaining flows will start probing for
the spare bandwidth incrementally, leaving some resources
sub-utilized. If small flows are intermittent, this could be re-
peated over and over again.

We identify this event by correlating packet drops with
low link utilization. Whenever unconstrained imbalance hap-
pens due to link contention between big and small flows,
packet drops will be present in the monitored data, but the
throughput on the provisioned circuit will not be maximized,
due to constant TCP back offs. Increasing link capacity does
not solve this problem, because load imbalance will still be
present. Instead, we adopt another solution: split the groomed
traffic in two circuits. We temporarily allocate a circuit with
higher capacity for the large data transfer, which can then flow
without interference from the small intermittent flows.

Application level flow admission, and different TCP con-
gestion control algorithms can help prevent this problem
[1][3]. However, some WAN operators do not have control
over software running beyond the network edge. For ESnet in
particular, the distributed management scenario of research
laboratories makes it nearly impossible to have all servers
using, for example, the same TCP variant.

6. Multi-layer aware topology update
Topology updates can result in performance degradation

when it involves re-routing traffic through multiple network
nodes [18]. Congestion-free topology updates for the packet
layer was proposed before [3]. In a multi-layered network, the
provisioning time of different layers can also induce perfor-
mance degradation, because optical layer reconfigurations
usually cause link interruptions [16].

Before offloading a flow, OSCARS-TE computes an of-
floading plan. The plan ensures minimum packet loss during
route updates. Instead of setting up a path in sequence, hop-
by-hop, the plan orders the updates such that lower sections of
the network have higher priority, and end-points have the low-
est priority. Whenever a route update in the optical domain is
made, OSCARS-TE creates an event listener for link state
changes of ports in the packet layer that are part of the path.
The collection of these event listeners related to a topology
update acts as a barrier for the progression of the update,
which is only trespassed when a stable connection is detected
in the packet layer. This avoids creating a black hole in the
optical layer, which would drop all packets flowing through it,
slowing down or even stopping the flows being offloaded. The
updates on the packet layer are also done in a careful order to
prevent performance degradation, as described in [18].

7. Differentiation of Node Capabilities
When performing multi-layered topology changes, it is

important to distinguish nodes in different layers. Even though
OF-enabled packet switches can be controlled using the same
protocol, they usually have multiple differences that can pre-
vent seamless integration. Examples are IEEE 802.1Q VLAN
tag restrictions, flow table capacity and flow match fields. In
terms of VLANs, switches might deny the use of some VLAN
tags, reserving them for management and proprietary proto-
cols. Flow table capacity is often different between devices
[10]. Some vendors even allow a single device to be config-
ured in different modes to explore hardware tradeoffs, such as
increasing the flow table capacity while having a less detailed
flow matching. The traditional practice is to minimize flow
table usage to avoid unexpected problems [3].

OpenFlow provides feature request and feature response
messages to specify what a device can do. However, it is not
the complete solution. The protocol lacks a more general and
flexible specification to distinguish node and interface capa-
bilities. One possible capability that can be leveraged for mul-
ti-layer network management is switching speed (i.e. picose-
conds for packets/flows and millisecond to seconds for opti-
cal/virtual interfaces). Understanding the limitations of a net-
work device (such as the ability to switch traffic based on
Ports,VLAN/L2,3,4 headers for example) and how it will react
when a request is issued (how long it takes to have a XCON
ready for example) can aid traffic management decisions.

To overcome this limitation until the protocol is mature
and generic enough, we use an external database that is in-
dexed by an OF Datapath ID (DPID), and contents specifying
node capabilities. In terms of packet and optical capability
distinctions, an obvious difference is optical elements can only
switch traffic based on cross connects. As described before,
this can be translated to in_port and output action in Open-
Flow terminology. A not so obvious difference is that optical
devices can have only one flow rule per interface, i.e. once an
in_port match is instantiated for a port, all the bandwidth
available for that port is allocated regardless of the required
bandwidth. As OSCARS-TE keeps track of reserved band-
width, it is important to decide where bandwidth would go at

path computation time, and how allocations affect the remain-
ing bandwidth. To deal with this issue, we used the concept of
allocation granularity from OSCARS, which dictates the min-
imum bandwidth to be allocated when a flow uses virtual in-
terfaces. We also leverage OSCARS hierarchical Path Compu-
tation Engine [11] to find paths suitable for user-supplied re-
quests that satisfy network restrictions.

IV. EVALUATION
Our experiments use the testbed depicted in Figure 2. We

have one Brocade MLXe router, one NEC PF5240 switch and
3 Infinera DTN-X OTN/DWDM, interconnected as shown in
the picture, and 4 servers. All servers have CentOS 6.4 with
Linux 2.6.32. Two servers are used to run OSCARS-TE and
Floodlight, and other two are used to send traffic through the
network. Because we have only two hosts creating traffic, we
emulate a cluster of computers within a domain with multiple
NICs on each host, that are in turn connected to different ports
of our Brocade router. These hosts have Intel Xeon E5620
CPUs and 2 Myricom 10 Gbps Dual NICs. The two extra
servers running OSCARS-TE and Floodlight have Intel i7-
3770 CPUs. There is no significant load on these servers, as
they are used exclusively to run the applications specified. All
the OpenFlow control messages use a separate control net-
work running at 100Mbps, that has no significant load.

Our evaluation seeks to address four questions:
1. Understand how interaction of big flows with small

flows sharing a link impacts overall network throughput.
2. Quantify the delays involved in traffic offloading for a

multi-layered environment, with focus on the delays in-
duced by the creation and deletion of cross connects.

3. Measure the performance degradation in network recon-
figurations without using planned updates.

4. Quantify delays involved in traffic optimizations and de-
tection of big flows in our prototype.

1. Small vs. big flows through a circuit
In this experiment, we analyze the impact of currently

available TCP congestion control on maximum network
throughput. This topic has extensive presence in the literature.
However, it is not realistic to assume that all hosts in the net-
work use one particular version of TCP, as network operators
often do not have control over the network software stack used
by computers. Therefore, we limit our experiments to conges-
tion control algorithms available in our servers. These are Re-
no, Cubic, Hamilton TCP (htcp) and Highspeed TCP.

We start this experiment creating a 10Gbps circuit to carry
traffic between the two domains in Figure 2. In a traditional
environment, once the circuit becomes active the SDN con-
troller (or routers at the ends of the circuit) will establish the
(logical) link between two switches A and C. We measured
the maximum achievable throughput through the 10G circuit
to be ~9.8 Gbps. We then generate traffic patterns intended to
replicate the traffic in a network that carries large scientific
data transfers and multiple small flows sharing a circuit.

We use the microbenchmark iperf to generate competing
flows. One of the flows transmits a continuous amount of TCP
traffic and have unbounded demands for the duration of the

experiment. This flow represents a big data science workload,
which involves the movement of a gigabyte-sized file transfer
between two domains [11]. The other flows are a combination
of small-sized data transfers, created by spawning multiple
iperf instances, which send random data through the same
circuit to the other domain. These small transfers are of S
bytes each, with S uniformly distributed between 512 KB and
4 MB. These sizes were chosen to match the total download
sizes of common websites, with some examples listed in Table
1. The benchmark starts C={4,8,16,32} new iperf transfers of
size S when the number of active transfers falls below C. Each
run lasts for 30 seconds. Because these transfers are bounded
by computation (which involves creating iperf processes, allo-
cating buffers in the operating system, establishing TCP con-
nection, etc.) the bandwidth consumed by these transfers are
small, usually of a few Mbps. Figure 4 shows the bandwidth
consumption of small transfers when C=4 and C=8.

Figure 5 shows the throughput achieved using this work-
load when we use 4 variants of TCP: Reno, Cubic, Hamilton
and Highspeed. As we can see, fluctuations on network de-
mand prevents TCP flows from quickly adjusting their band-
width rates, and result in low link utilization. This happens
because TCP congestion control is constantly trying to adjust
its throughput, and the attempt to prevent creating more con-
gestion leaves some unutilized bandwidth. The problem gets
worse facing higher network delays. Because our testbed is
confined to a few data center racks of distance, the RTT be-

TABLE I. NETWORK CONSUMPTION FOR COMMON WEBSITES

Website Name Front Page Html Media Content

 cnn.com 168KB 2.3MB

 es.net 36K 1.6MB

 en.wikipedia.org 96KB 492KB

 youtube.com 400KB 2.1MB

 facebook.com 688K 4.3MB

Figure 5: Throughput of a 10G link with a big TCP flow compet-
ing with C={4,8,16,…} small concurrent TCP flows.

Figure 4: Throughput over time (in seconds) used by small flows
when C=4 (left) and C=8 (right). Note: Throughput in Mbps.

tween nodes is less than 1ms. We simulate slightly higher
RTTs by using the Linux Queuing Discipline (qdisc) netem,
that delays packet transmission at hosts. We set the delay for
10ms and repeat the same experiment. The results are shown
in Figure 6. Note that the throughput achieved using a single
flow with higher throughput is also ~9.8Gbps. The reduced
throughput facing higher latency comes from the slower
bandwidth recovery rate of TCP.

As mentioned earlier, one strategy to mitigate this problem
is to use multiple circuits, and split flows based on packet
headers, like in ECMP. However, this does not guarantee that
one of the links will experience a similar mix of big and small
flows, what could still prevent higher levels of utilization on
one of the paths. Other approaches would be to reshuffle the
flows to different paths as load imbalance starts to happen as
in MPLS-TE. However, this approach could lead to non-
optimal allocation strategies [3][8], and still lead to the same
problem as in ECMP. Instead of such approaches, OSCARS-
TE explores allocating extra bandwidth on demand to flows
that suffer throughput loss at lower layers.

2. Network Reconfiguration Overheads
Before exploring the benefits of OSCARS-TE, we first

evaluate the performance of the underlying hardware for dy-
namic traffic management. This is important to understand if
bandwidth relocation across layers can be done fast enough to
absorb changes in traffic demands.

Here we focus on the impact of network changes perceived
by applications, as application performance is directly related
to the performance of a dynamic network. The software used
in the network stack is usually sensitive to changes in network
availability, and will try to adapt its resource consumption as
soon as it identifies problems (video streaming applications on
top of UDP for example usually adjust their encoding quality
according to resource availability).

We start by measuring the reconfiguration delays to setup
XCONs in the transport domain using the OTS. In this case
we set up a path that interconnects Cluster 1 to Cluster 2 pass-
ing through devices A ↔ X ↔ Y ↔ B ↔ Y ↔ Z ↔ C as
shown in Figure 2, and perform a router bypass in node Y,
with resulting path A ↔ X ↔ Y ↔ Z ↔ C. Throughout the
duration of the experiment, we send small packets with 1 mil-
lisecond inter-packet delay. A monotonically increasing se-
quence number is added to the packets, and the server at clus-
ter 2 inspects them during the reconfiguration, inferring how
many packets were lost. Note that this experiment gives us the
total time to reconfigure one node from the optical transport

layer, including the software overheads involved in communi-
cation with the SDN controller, and the physical layer delays
in identifying variations in link availability [16].

Figure 7 shows a CDF of the measured down time. The
minimum value measured is 150ms, and average 217ms. Note
that this involves not only cross establishment at node Y, but
all the control loop between our SDN controller for tearing
down two cross connects, setting up a new one, and waiting
Ethernet devices to identify the connection [16]. This value
can be used in the offloading decision. Given a predicted flow
size and expected switching time, we can calculate what
would be the gain in offloading a flow to a higher bandwidth
path or keeping it in its current path. However, success in this
strategy would depend on how good the prediction of flow
size is, because if the predictions are not accurate, a flow
could be over before a new path is made available.

3. Regular vs Planned Topology Update
In this experiment, we show the performance impact of

performing topology updates without a multi-layer update
plan. We use the path A ↔ X ↔ Y ↔ B ↔ Y ↔ Z ↔ C as a
starting point and offload its traffic to path A ↔ X ↔ Z ↔ C.
In this case, iperf is used to create a single flow between do-
mains. When T=10s, we request a topology update with man-
ual input, and analyze the throughput over time.

Figures 8 and 9 shows results for regular, one-shot topol-
ogy update and planned topology update, respectively, for

Figure 8: Throughput of a 10G link with a big TCP flow
competing with C small TCP flows under 10ms latency

Figure 9: End-to-end view of PXC reconfiguration delay.

Figure 6: Throughput with planned topology update at 10s

Figure 7: Throughput during one-shot topology update at 10s

different variants of TCP. In the regular update, offload re-
quests are made by the controller to all the nodes in the path at
the same time. We can see that, even though the disconnection
time was measured as a few milliseconds, TCP reacts to ab-
rupt changes in link availability more aggressively, and needs
a few seconds to recover its maximum throughput. When we
use planned topology updates, we do not see this problem, as
the traffic is seamlessly moved between paths.

4. Reacting to demand changes
In this experiment we evaluate the efficiency of OSCARS-

TE in identifying and reconfiguring the network based on the
measured demands. We use the same workload as before, with
a mix of C concurrent small flows and a big transfer flowing
between cluster A and B. However, we start the big flow a few
seconds after the beginning of the experiment, to emulate a
sporadic big data transfer between the two domains sharing
the resources with regular network traffic. The initial path
reserved in this experiment is A ↔ X ↔ Y ↔ B ↔ Y ↔ Z ↔
C. The number of concurrent transfers is set to C=16. We also
set OSCARS-TE measurement interval Ts to 6s.

Figure 10 shows the measured throughput over time both
of the initial static 10Gbps path and the throughput on the
elastic path. Initially, from T=0s, only regular traffic is present
on the path and throughput oscillates between ~200mbps to
1Gbps. At T~34 the large data transfer is started, which com-
petes for the 10Gbps of the static path with the small transfers,
preventing maximum link utilization. OSCARS-TE detects
these events after a few seconds, and splits the network traffic
responsible for the load imbalance growth. Once the new elas-
tic path is allocated, the big flow is offloaded to it at T~55s,
with short flows left in the statically allocated path.

These results show that the initial implementation of
OSCARS-TE provides multi-layer orchestration without sig-
nificant performance degradation. We leave a more extensive
analysis of the system and its parameters for future work.

V. CONCLUSION
There are multiple caveats in desigining a multi-layer

WAN network management system. In this paper we describe
the strategies used by OSCARS-TE, a management system
implemented, deployed and evaluated in a multi-vendor multi-
layered network. The system uses a SDN controller to
intermediate the communication with network devices using
OpenFlow (OF). We discuss some of the limitations of the OF
protocol to support multi-layer network management and
present the solutions we adopted to overcome them.

We show that inefficiencies in inter-data center WAN links
can be caused due to TCP congestion control and show how
OSCARS-TE can be used to solve this problem. To the best of
our knowledge, this is the first practically deployable multi-
layer SDN application that addresses multiple practical
problems to make cross-layer network orchestration a reality.

ACKNOWLEDGEMENTS
This work was partially supported by the CIAN NSF ERC

under grant #EEC-812072 and EC FP7 grant 285939
(ACROSS). We would like to thank Andrew Lake, and Si-
varam Balakrishnan for their help and support.

REFERENCES
[1] Cisco Visual Networking Index: Forecast and Methodology, 2012–2017
[2] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., ... &

Vahdat, A. “B4: Experience with a globally-deployed software defined
WAN”. In ACM SIGCOMM (pp. 3-14). ACM. 2013.

[3] Hong, C. Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri,
M., & Wattenhofer, R. “Achieving high utilization with software-driven
WAN”. In ACM SIGCOMM (pp. 15-26). ACM. 2013.

[4] Doverspike, R. D., & Yates, J. “Optical network management and
control”. In Proceedings of the IEEE, 100(5), 1092-1104, 2012

[5] Das, S., Parulkar, G., McKeown, N., Singh, P., Getachew, D., & Ong, L.
“Packet and circuit network convergence with OpenFlow” In OSA
Optical Fiber Communication Conference (p. OTuG1). 2010.

[6] Channegowda, M., Kostecki, P., Efstathiou, N., Azodolmolky, S.,
Nejabati, R., Kaczmarek, P., Simeonidou, D. “Experimental evaluation
of extended OpenFlow deployment for high-performance optical
networks” In European Conference and Exhibition on Optical
Communication (pp. Tu-1). Optical Society of America (OSA), 2012

[7] Liu, L., Zhang, D., Tsuritani, T., Vilalta, R., Casellas, R., Hong, L., ... &
Muñoz, R. “First field trial of an OpenFlow-based unified control plane
for multi-layer multi-granularity optical networks”. In OSA Optical
Fiber Communication Conference (pp. PDP5D-2). 2012.

[8] Pathak, A., Zhang, M., Hu, Y. C., Mahajan, R., & Maltz, D. “Latency
inflation with MPLS-based traffic engineering” ACM SIGCOMM
conference on Internet Measurement Conference (pp. 463-472), 2011.

[9] Sadasivarao, A., Syed, S., Pan, P., Liou, C., Lake, A., Guok, C., Monga,
I. “Open transport switch: a software defined networking architecture
for transport networks”. In ACM HotSDN (pp. 115-120), 2013.

[10] https://github.com/OFWorkshop/OFW-Trema/tree/master/TableProbe
[11] Monga, I., Guok, C., Johnston, W. E., & Tierney, B. Hybrid networks:

Lessons learned and future challenges based on esnet4 experience. In
Communications Magazine, IEEE, 49(5), 114-121. 2011.

[12] Gerstel, O., Jinno, M., Lord, A., & Yoo, S. B.
“Elastic optical networking: A new dawn for the optical layer?” In
Communications Magazine, IEEE. 50(2), s12-s20. 2012.

[13] Farrel A., A Unified Control Plane: Dream or Pipedream? In
International Conference on IP+ Optical Network (iPOP), 2010

[14] Das, S., Parulkar, G., & McKeown, N. “Why OpenFlow/SDN can
succeed where GMPLS failed”. In European Conference and Exhibition
on Optical Communication (pp. Tu-1). OSA. 2012.

[15] ITU. G.709: Interfaces for Optical Transport Network, Feb 2012.
[16] Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H.,

Subramanya, V., Fainman, Y., ... & Vahdat, A. “Helios: a hybrid
electrical/optical switch architecture for modular data centers”. ACM
SIGCOMM, 41(4), 339-350. 2010.

[17] Liu, L., Tsuritani, T., Morita, I., Guo, H., & Wu, J. “OpenFlow-based
wavelength path control in transparent optical networks: a proof-of-
concept demonstration”. In European Conference and Exposition on
Optical Communications (pp. Tu-5). OSA. 2011.

[18] Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., & Walker, D.
“Abstractions for network update”. ACM SIGCOMM (323-334) 2012.

Figure 10: Elastic bandwidth allocation for large transfers.
Throughput is limited by contention, and extra resources allow
better application-level network performance.

