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Abstract

This paper describes a simple scheduling procedure
for use in multicast data distribution within a logistical
networking infrastructure. The goal of our scheduler
is to generate a distribution schedule that will exploit
the best network paths by using historic network perfor-
mance information. A ”spanning tree” is constructed
between available logistical depots to help reduce the
overall time of data movement.

Our hypothesis is that we can generate appropri-
ate schedules from historical network measurements.
In order to evaluate the scheduling procedure we have
employed the multicast operation used in the Internet
Backplane Protocol (IBP) middleware suite. Investiga-
tion into the merits of such a scheduling procedure in-
volved a control group that performs a broadcast to a
set of logistical depots and an experimental group that
is configured to perform a multicast via schedules gen-
erated based on historical network data. All testing was
conducted on PlanetLab, a distributed network service
testbed.

1 Introduction

One of the chief sources of overhead in Grid environ-
ments is that of data movement. Computing systems and
networks are growing ever faster, but the relative cost of
data movement remains high. Logistical Networking [9]
(LN) was developed to leverage storage and processing
in the network to improve performance and functionality
in distributed computing environments. The LN mode
positions “depots” at strategic locations in the network.
These depots may then be used on an as needed basis to
store information “en route” across a network [19]. One
obvious goal of this activity is to bring data closer to the
places where it will be used [8].

A common data distribution scenario is a “multicast”

of data from a single host to multiple recipients [24,12].
Usually a tree is formulated such that data is trans-
mitted to certain nodes that in turn will send to other
nodes [21,7,2,26]. Distribution trees, for the most part,
are constructed utilizing some notion of underlying net-
work topology; this information is often gleaned from
network measurement data [25,11].

In general, the performance of a broadcast operation
as shown in Figure 1a, in which a single source dis-
tributes data to each destination, can be improved upon
greatly. One way to do so is to assemble a multicast
tree with the initial data source as the root of the tree as
shown in Figure 1b.

(a)Broadcast (b)Multicast

Figure 1. The broadcast operation requires
the root node to do all of the work, whereas
the multicast approach allows intermedi-
ate nodes to assist

This work presents a basic scheduler for constructing
multicast trees that utilize LN infrastructure. To evalu-
ate our approach, we utilize intermediate storage in the
network as enabled by the Internet Backplane Protocol
(IBP) [19]. The goal of IBP is to provide LN capabili-
ties to client applications [9]. Although IBP offers other
avenues to improving performance through data local-
ity, this work focuses only on using IBP as a vehicle for
executing synchronous, one-to-many data movement.

Previous incarnations of the logistical scheduler used



for this work were found in various implementations of
the Logistical Session Layer (LSL) [21, 20]. In addi-
tion to modifying the scheduler to communicate with
IBP, the representation of network performance infor-
mation has been generalized. Whereas the former sched-
uler depended on data from the Network Weather Ser-
vice (NWS) [23], the current implementation will con-
sume network information from other sources, as NWS
data is not currently available for the entire PlanetLab
testbed. To date, it has proven to be difficult to con-
struct a large-scale measurement infrastructure capable
of providing network performance information on de-
mand. As such, we focus on commonly-available his-
torical measurement data in an effort to determine its
efficiency as a basis for scheduling network data move-
ment.

This paper will proceed as follows. First, we will
briefly outline our general approach to schedule con-
struction. Next we will discuss the network measure-
ment data that we utilized. We will then describe our ex-
perimental framework and present results from our mea-
surements.

2 Multicast Approach Overview

Multicast is an often investigated topic. Previous
work has addressed issues such as multicast within a fast
message passing cluster [22, 4], as well as application
level multicast on public networks [15,24,5,3,12,26,10].
Our approach is unique in that there is no persistent mul-
ticast tree or peer relationships. Rather, we instantiate
the multicast structure from the edge of the network uti-
lizing existing LN resources.

A multicast schedule often relies on knowledge of the
target resources as well as status information regarding
the network. Once network information is known, it is
possible to generate a distribution directive in the form
of a ”spanning tree” [21, 7, 20, 26, 2]. This tree is con-
sumed by the multicast operation to decrease the over-
all time to distribute some amount of data to all nodes.
Our approach is unique in that is considers a very low
level of network measurement infrastructure and makes
no measurements internally.

Our scheduler takes into account available storage lo-
cations as well network performance information gath-
ered over some period of time as part of the PlanetLab
project [21, 20, 6, 25, 11, 16, 17]. This derived multicast
schedule makes use of the perceived best paths to dis-
perse the data as possible. Although it is quite possi-
ble to use a variety of criteria when creating a schedule
such as the cost or utilization of specific computational
resources, this paper will deal strictly with maximizing
the speed of the data transfer and hence minimizing the
total time needed.

2.1 Performance Measurements

Frequently requesting data from an on–demand sys-
tem such as the NWS can easily cause a bottleneck
when generating dynamic schedules; this can become
especially evident within testbeds the scale of Planet-
Lab [18,6]. For the reason that active measurements are
hard to scale, this work will show that it is possible to
generate acceptable data movement directives through
the primary usage of historical measurements; virtually
no reliance on current network status (beyond that of
connectivity) is required by this system at run time.

Various tools exist to measure and analyze perfor-
mance data over a network; a discussion of each avail-
able method as well as the inherent traits of each are well
beyond the scope of this paper. We will focus on infor-
mation collected from results of running an Iperf [14]
test to measure achievable bandwidth to and from all
available computing resources on PlanetLab. Iperf mea-
sures the achievable bandwidth between a pair of hosts
for a given amount of data.

The distribution spanning tree is created based on this
network performance information. Ultimately, the goal
of performance measurement is to get as much relevant
information as possible while impacting the medium as
little as necessary. This has led to reliance upon avail-
able measurement sources to avoid unnecessary impact
on other network traffic as well as simplify the collection
process.

The input to the scheduler is the maximum observed
bandwidth between a pair of resources for a given period
of time. The use of the maximum value is based on the
intuition that the best measurement we have observed
comes the closest to representing the link with no cross
traffic. While current link conditions may change, our
goal is to determine whether a more general notion of the
achievable bandwidth is sufficient, as the cost of basing
our decision on this data is certainly easier.

2.2 Measurement Collection and Analysis

Each PlanetLab machine runs a client application that
gathers Iperf measurements for all other PlanetLab ma-
chines; the results are stored in publicly accessible log
files [17] and are updated on an incremental basis. A
complete set of Iperf data for all PlanetLab resources
takes approximately one week to generate. To build an
adequate basis of measurements it is necessary to in-
duce several consecutive weeks. These accrued values
are gathered and built into a rudimentaryN x N matrix
of performance information whereN is the total number
of PlanetLab machines running a client. Despite there
being a requisite quantity of data, additional processing
steps are necessary.
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(a)Standard (b)Enhanced

Figure 2. Network sites offer a plurality of
resources. It is possible to replicate mea-
surements across similar resources.

Some instantiations of the performance matrix can be
sparse due to unresponsive machines. Observation has
shown that the algorithm proceeds in a step-wise fash-
ion, never overtaxing a single resource for a given time
period. This observation is able to explain the data dis-
crepancies; when the algorithm visits a node early in the
week it may be responsive and provide some informa-
tion, later the resources could be unavailable and un-
able to provide any performance data. This fact is rea-
son enough to only be concerned with the maximum ob-
served value over the time series.

An example of incomplete measurement data is
shown in Figure 2a. The sparsity of the matrix can be an
issue when attempting to construct a distribution sched-
ule. Observation of the figure shows that some nodes are
far from completely connected. To correct this obvious
discrepancy it is possible to exchange information be-
tween multiple machines under the assumption that they
are in close proximity to each other and share a common
link to the outside world. This relationship can be tested
by examining both the IP address and netmask config-
uration; related machines may then be included in the
interpolation process to exchange relevant data.

This interpolation technique helps to populate the
matrix resulting in a greater variety of information for
the eventual scheduling. In essence, we create informa-
tion on a site by site basis instead of a computer to com-
puter basis [7]. An example of this transformation can
be seen in Figure 2b.

The extracted measurements are not intended to pro-
vide any sense of symmetry. It is quite possible that
measurements observed between nodesa andb can dif-
fer greatly from that of their converse. This anomaly
can best be addressed by examining the administrative
policies of PlanetLab. A resource that decides to set in-
coming and outgoing bandwidth limits may do so when
necessary; if at a given time in the day the resource
is nearing the peak of allowed usage the network will

“constrict” to allow for less available bandwidth. This
permits resources to still function, albeit in a slightly de-
graded manner.

Exploring the issue of machines within a close prox-
imity a little further reveals a nuance that is generally
overlooked: nearby machines often have high available
bandwidth. In most situations the machines are con-
nected via the same LAN and should be able to achieve
near maximum bandwidth between each other. To draw
attention to this fact all machines on the same LAN are
given an artificially high bandwidth value. This assures
that a multicast will be delivered only once to a single
site, thus increasing throughput even further [20,21].

2.3 Experimental Considerations

Due to small variations in network measurements,
machines with functionally similar connectivity have
slightly different edge values. To keep the generated
schedules simple, we would like to consider measure-
ments within someε of one another as the same [21]. In
practice, this amounts to a modification to the schedul-
ing algorithm such that “better” paths are only added
to the tree if they improve on the existing path by more
thanε. Thus, the constructed spanning trees can be made
more conservative by increasingε.

(a)MST (b)MST with ε

Figure 3. Distribution graph featuring three
nodes; By adjusting the value of ε we can
limit the depth of the directive.

Consider the graph shown in Figure 3a. The true min-
imum spanning tree should include the edges fromA to
B andB to C. A more desirable tree, as shown in Fig-
ure 3b, would employ the edgeA to C as well asA to
B; this effort would further reduce the depth of the gen-
erated directive albeit adding to the branching factor.

Schedules bearing a tree structure that is uncom-
monly deep and with minimal branching are undesirable
for a multicast. A similar structure that is shallow as well
as wide is equally unappealing. Experiments have been
designed to illustrate the effect that adjustingε can have
on the generation of a well balanced data distribution. It
will be shown that alteringε can reduce the depth and
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increase the width of a spanning tree well within accept-
able guidelines.

The ε threshold is rather sensitive in relation to ob-
served bandwidth because of the low variance; through-
out the world the difference in achievable bandwidth on
any given network differs by no more than a small order
of magnitude. This threshold value will be presented as
the highest possibleε that can achieve the minimum data
movement time.

2.4 Schedule Creation

Data collection and analysis aside, the actual algo-
rithm to calculate a dynamic multicast schedule is the
crux of this work. The data we bring to this algorithm
is akin to a completely connected graph. Graph vertices
are known to be the different computing resources that
house a logistical depot. Edges are the known bandwidth
figures and connect the various vertices. Because the
collected data may be far from perfect it is necessary
to fabricate “expensive” edges between hosts that may
not be able to communicate due to an absence of data.
This expensive property of a given edge will ensure that
the algorithm will complete given the basic information
provided.

To evaluate the cost from vertex to vertex within the
graph it is necessary to examine each edge along the
way. The cost of entire path as demonstrated in [20]
is not the sum of each link, but simply the cost of the
slowest (i.e. most ”expensive”) link. To produce min-
imum spanning tree, we need a metric where smaller
values are better. Since we are operating with achiev-
able bandwidth measurements, we can convert this to
”transfer time” estimates by considering1/bandwidth
as the ”values” for edges between vertices.

To optimize paths in a graph environment it is nec-
essary to minimize the maximum weights – thus the
Minimax approach is appropriate. The minimax algo-
rithm is a well known recursive algorithm, normally
used for selecting the next desirable move in intelligent
systems. For our purposes we will examine a directed
graphG = (V,E) whereV is the set of vertices andE
is the set of edges. It is our goal to make the move that
maximizes the minimum value of the position resulting
from subsequent moves. For brevity a step by step de-
scription of the minimax algorithm has been omitted, but
result of each step of the process gives the best possible
move to make for a given node. The end result presents
a distribution tree that visits each node utilizing paths
with maximum bandwidth.

Minimax is a greedy algorithm and has much in com-
mon with Dijkstra’s Shortest Path algorithm [13] as well
as an enumeration of other similar problems. The cost
to build such a tree is understood to have an asymptotic

running time ofO(NlogN) when keeping the edges of
the graph in order.

Number Name
1 dschinni.planetlab.extranet.uni-passau.de
2 pl1.cs.utk.edu
3 pl2.cs.utk.edu
4 lefthand.eecs.harvard.edu
5 plab1.ee.ucla.edu

Table 1. Hosts used to illustrate directive
construction.

The implementation is always aware of the starting
node (vstart); it is from this node that we construct all
eventual paths in the graph. It is of note that any node
can be the root node as long as it features network con-
nectivity. Nodes that suffer poor connectivity (possible
due to bandwidth restrictions) may still function as the
root node, but may delegate most or all of the multi-
cast responsibility to better suited nodes. In experimen-
tal settings it was not uncommon, given a slow initial
node, that control would be transfered to a more suited
environment such as resources located on the Internet2
Abilene backbone [1]. Once the multicast has propa-
gated along the fastest connections it will slowly start to
reach leaf nodes in parallel.

2.5 Schedule Example

1

2

3

4

5

Figure 4. Completely connected graph fea-
turing a subset of the PlanetLab nodes.
Each node is understood to be accessible
and running an IBP depot.

We will illustrate how a spanning tree is constructed
using the hosts in Table 1. These resources exist within
PlanetLab in various parts of the world. Over the span of
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a week the Iperf data will be gathered from each node to
reveal the bandwidth that exists between all other partic-
ipants. This example will construct a small graph using
the listed nodes and extract a spanning tree based on the
measurements. The format of such a completely con-
nected graph is in Figure 4.

Node 1 Node 2 Node 3 Node 4 Node 5
Node 1 ∞ 5.84 5.84 -1 8.43
Node 2 1.12 ∞ ∞ 7.31 1.05
Node 3 1.12 ∞ ∞ 7.31 1.05
Node 4 4.94 3.63 3.63 ∞ 2.49
Node 5 -1 5.53 5.53 -1 ∞

Table 2. Observed maximum achievable
bandwidth between hosts.

Maximum achievable bandwidth times for the nodes
mentioned in Table 1 are shown in Table 2. These illus-
trate the observed measurements between hosts over a
finite amount of time, namely a one month period. The
original data was far from complete due to connectiv-
ity or congestion problems within the network that may
have prevented necessary information from being col-
lected. It is of special interest to note that these nodes
have been interpolated within site boundaries. Augmen-
tation of values, such as creating an “expensive” edge
of −1 where data was absent as well as maximizing the
bandwidth between related hosts is also seen in this ex-
ample.

1

2 5

4 3

Figure 5. Resultant spanning tree created
from the graph in Figure 3.

After the scheduling program has consumed the
available data the spanning tree pictured in Figure 5 is
created. This tree illustrates the best paths to take from
the root node (Node 1) and will ensures a stop at every
other listed depot. Note how the algorithm is able to
recognize the boundary of a specific site (namely UTK)
and take advantage of the proximity of the nodes. It has
been observed in [20] that distribution of information to

a single node at each site with additional transfer to oc-
cur internally is much more efficient than multiple dis-
tributions to a site.

3 Experimental Results

Figure 6. Comparison of 1MB data move-
ment via multicast between logistical re-
sources.

Figure 7. Comparison of 2MB data move-
ment via multicast between logistical re-
sources.

A small set of approximately40 nodes was consid-
ered for this experiment; the root node was varied be-
tween a small subset of approximately5 nodes. It was
not always possible to reach all nodes during the trial
partially because of the dynamic nature of the PlanetLab
testbed. An important realization is that before each trial
all nodes are examined; a node that is perceived to be
unavailable is always removed from consideration. This
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extra step can ensure a properly constructed tree that re-
turns accurate results.

3.1 Experimental Methodologies

Two classifications of tests were performed upon the
set of nodes – broadcast from a single node and mul-
ticast among nodes. The goal being to deliver informa-
tion to all available nodes in the shortest amount of time.
The multicast experiment is further divided into distinct
parts, each part dictated by the variability ofε we choose
to consider when making our distribution schedule.

It is our contention that a well chosenε ensures a tree
that is balanced in both depth and width. The alterna-
tives to this of course are trees that become wide and
shallow; essentially changing the multicast into a broad-
cast.

Figure 8. Comparison of 4MB data move-
ment via multicast between logistical re-
sources.

Each part of the experiment aims to transfer files of
varying sizes; files ranging from from1 to 16 megabytes
were used for verification purposes. Our intention is
to show that no matter the size of a transfer, multicast
with adaptive scheduling and appropriateε choice will
always produce a better result than that of broadcast.
Ranging the file size will also illustrate that the overhead
of our approach is justified even for small file sizes.

Each file size was tested with severalε values to re-
veal a relationship between multicast performance and
tree topology; consideration was given to the following
test cases:

• Simple broadcast tree

• Multicast withoutε

• Multicast withε being.1

• Multicast withε being.2

• Multicast withε being.3

It is of note to realize that despite the static nature of
the data it was always observed that different distribu-
tion trees were generated depending on the chosen root
node as well as theε choice. Each distinctly crafted tree
was then tested with the various file sizes producing the
experimental presented here. Results for each file size
are shown in Figure 6 through Figure 10. These graphs
show the observed maximum, average, and minimum
data transfer times as well as colored regions illustrat-
ing the25th, 50th and75th percentiles of the observed
data.

Figure 9. Comparison of 8MB data move-
ment via multicast between logistical re-
sources.

3.2 Analysis

In every instance it is clear to see that having anε
value of.1 will produce the fastest transfer times. It can
also be said that broadcast trees produce the most unde-
sirable results, followed closely by the situation whereε
is .3. As ε increases it forces the tree to sacrifice depth
in favor of greater branching factor at each level. This
basicallyflattensthe tree making it resemble the overall
structure of the broadcast method.

The effect ofε on tree depth is shown in Figure 11.
The tree depth asε increases experiences a steady de-
cline. Having a tree that is too deep is of no benefit in
the data movement process because it necessitates ad-
ditional hops. Each additional hop takes valuable time
during the multicast.

Althoughε can limit the depth of a data movement di-
rective, it does add to the branching factor at each level.
A reasonable branching factor can improve parallel data
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Figure 10. Comparison of 16MB data
movement via multicast between logistical
resources.

movement. Reduction of tree depth and the correspond-
ing increase in branching can negate much of the poten-
tial speedup.

Ideally, it is desirable to branch equally among the
various levels and, when applicable, evenly distribute
the multicast to better suited nodes. It is not always
the case that all nodes are created equal. Trees may be-
come lopsided when a single node dominates all oth-
ers by achieving exemplary bandwidth values. By twid-
dling ε we can level the playing field and eliminate the
dominating effect that a resource may have on the initial
dataset.

Figure 11. Tree depth as ε increases.

A graph demonstrating the effect of taking the aggre-
gate sum of the branching factors for all nodes is shown
in Figure 12. This aggregation is able to demonstrate
the steady increase in branching as the value ofε in-
creases. A reasonable amount of branching at the ap-

propriate times is of great benefit to the performance of
this system. The trend demonstrated in Figure 12 illus-
trates an appropriate choice ofε can produce an accept-
able branching factor that will consistently perform bet-
ter than broadcast as well as less optimal choices ofε.

Figure 12. Aggregate branching factor for
various values ε.

4 Conclusion

We have shown that it is possible to achieve a sig-
nificant speedup in logistical networking multicast over
that of a broadcast operation using network performance
information gathered and archived by an unrelated ser-
vice. This multicast procedure consumes a distribution
directive in the form of a minimal spanning tree con-
structed from network measurements over the course of
a month. These static measurements are sufficient in
describing routes that have the potential to provide the
fastest transfer times. This approach provides the basis
for a general-purpose tool that could be used with mini-
mal effort.

Future plans for this project revolve around the search
to create a directive that utilizes bandwidth, latency,
and other factors in the formation of the multicast tree.
These hybrid directives should be able to increase ef-
ficiency by an even larger margin. Additionally, long-
lived data transfers may need to adapt to change in con-
ditions over the lifetime of the session.

Because of the scale of this project historical mea-
surements were the primary form of mediation when
creating a distribution schedule. Future work centers
around issues regarding the availability of network mea-
surements; historic as well as current. A comparison of
the two approaches should reveal the value of using his-
toric measurements versus that of dynamic.
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