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Executive Summary

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US De-
partment of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the
physical sciences in the United States. In support of the Office of Science programs, ESnet regularly
updates and refreshes its understanding of the networking requirements of the instruments, facilities,
scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful
enabler of scientific discovery for over 25 years.
In September 2014, ESnet and the Office of Basic Energy Sciences (BES), of the DOE Office of Science,
organized a review to characterize the networking requirements of the programs funded by the BES
program office.
Several key findings resulted from the review. Among them:

1. Workflow tools to integrate experimental facilities with computational facilities have been deployed
at a number of facilities, and others are engaged in trials of the tools. The resultant “superfacilities”
which are composed of an experimental facility, a computational facility, the network to interconnect
them, and the workflow tools to tie it all together are expected to become increasingly important to
BES-funded science programs.

2. Many collaborations continue to use portable storage media (e.g., removable hard disks) for data
transport and archival storage. The most important limitation of this antiquated approach to data
management is that data stored on portable media is generally not available to other research
groups, which greatly limits its usefulness. This “dark data” is typically used only for a single pub-
lication by the researcher who collected the data, and represents a significant untapped resource.
A mechanism for sharing this data, subject to appropriate access policies, could allow many more
scientists to make effective use of experimental data. In addition, a common mechanism for shar-
ing would offer significant performance benefits when compared to physical transport of portable
media, as demonstrated by emerging superfacility workflows.

3. Many of the micrographs collected in electron microscope facilities are not published, and are
not searchable. An example of “dark data,” these unpublished micrographs might hold the data
underlying additional discoveries, if there were a way to analyze them (e.g., for particular types of
diffraction patterns such as those characteristic of quasicrystals). A data storage mechanism that
allowed many micrographs from many electron microscopy facilities to be analyzed together could
provide the field of materials science with significant scientific leverage and new discoveries.

4. There are two distinct workflows involved in the use of any experimental facility: a data acquisition
workflow which involves running the experiment, collecting the experimental data, and near-real-
time data analysis to guide the experiment; and a deep analysis workflow which involves detailed
scientific analysis of the collected experiment data leading toward discovery. These two workflows
are equally important, but operate on different time scales and have different requirements.

5. At many facilities, there is a mismatch between the resources spent on instruments which generate
data during experiments and on tools and staff for analyzing the experimental data produced by the
experiments. Several attendees felt that it would be wise to devote additional resources to software
programmers or the development of analytics tools that could be used by multiple experiments.
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This report expands on these points, and addresses others as well. The report contains a findings
section in addition to the text of the case studies discussed during the review.
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Findings

Below are the findings for the BES and ESnet Network Requirements Review held in Germantown,
MD on September 9–10, 2014. These points summarize important information gathered during the
review.

• Workflow tools to integrate experimental facilities with computational facilities have been deployed
at a number of facilities, and others are engaged in trials of these tools. The resulting “super-
facilities” (which are composed of an experimental facility, a computational facility, the network
to interconnect them, and the workflow software and tools to tie it all together) are expected to
become increasingly important to BES-funded science programs.

• Many collaborations continue to use portable storage media (e.g., removable hard disks) for data
transport and archival storage. The most important limitation of this antiquated approach to data
management is that data stored on portable media is generally not available to other research
groups, which greatly limits its usefulness. This “dark data” is typically used only for a single pub-
lication by the researcher who collected the data, and represents a significant untapped resource.
A mechanism for sharing this data, subject to appropriate access policies, could allow many more
scientists to make effective use of experimental data. In addition, a common mechanism for shar-
ing would offer significant performance benefits when compared to physical transport of portable
media, as demonstrated by emerging superfacility workflows.

• Many of the micrographs collected in electron microscope facilities are not published, and are not
searchable. An example of “dark data,” these unpublished micrographs might hold the data un-
derlying additional discoveries, if there were a way to analyze them (e.g., for particular types of
diffraction patterns such as those characteristic of quasicrystals). A data storage mechanism that
allowed many micrographs from many electron microscopy facilities to be analyzed together (e.g.,
in statistically significant ways, in contrast to the current practice of publishing a single “represen-
tative micrograph”) could provide the field of materials science with significant scientific leverage
and new discoveries.

• There are two distinct workflows involved in the use of any experimental facility: a data acquisition
workflow which involves running the experiment, collecting the experimental data, and near-real-
time data analysis to guide the experiment; and a deep analysis workflow which involves detailed
scientific analysis of the collected experiment data leading toward discovery. These two workflows
are equally important, but operate on different time scales and have different requirements:

– The data acquisition workflow is tightly coupled to the operation of the experiment, and the
goal is to maximize the productivity of the available beam time. Automation is key, as time
pressure makes all manual processes expensive. The collection of data provenance, data
storage, transfer to real-time analysis capabilities, and analysis feedback for guiding the ex-
periment are all important candidates for automation. Authentication and security systems,
workflow management tools, and so forth cause problems if they stand in the way of automa-
tion or compromise the ease of use of the experiment environment. The data analysis that
occurs during the data acquisition workflow must directly support the operation of the exper-
iment, and provide actionable information to guide the experiment such that the best data
sets are obtained. Fast turnaround for data analysis is key, because time is of the essence in
the data acquisition workflow—coarse analysis sufficient to guide the experiment is far more
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important than detailed analysis that takes a long time.
– The deep analysis workflow relies heavily on the quality of the data collected during the data

acquisition workflow—the beam time is over, the experiments have been conducted, and the
data sets (along with the collected metadata and other provenance information) are all that
remain. In contrast to the data acquisition workflow, time pressure is not the dominating factor.
Rather, the best tools are used for meticulous analysis of the experimental data, and the goal
is a discovery fit for publication. The deep analysis workflow relies on getting the data to the
places where the right analysis tools can be run—if the computation can be moved to the data
then this is done, and if the data must be moved to the computation, that is done.

• At many facilities, there is a mismatch between the resources spent on instruments which generate
data during experiments and on tools and staff for analyzing the experimental data produced by the
experiments. Several attendees felt that it would be wise to devote additional resources to software
programmers or the development of analytics tools that could be used by multiple experiments.

• There are many aspects of an experiment at a light source that contribute to the data rates (both
peak and average) that result from that experiment. The detector capabilities are one component,
but there are many others—sample change time and exposure time often limit the amount of data
that can be collected, and the local networking infrastructrure (both the LAN and the path to the
wide area) can be a factor as well. In many cases, increasing the network interface speed will not
have any effect on data rates or on scientific productivity, because the limiting factor is elsewhere
in the experiment workflow. However, there are several cases where straightforward workflow
improvements will result in a significant increase in the volume of data produced and the rate at
which the data are produced. In many cases, these improvements would increase data rates by a
factor of 5 or more.

• Multiple facilities and research groups mentioned improvements in performance and scientific pro-
ductivity after deploying modern data management capabilities such as Data Transfer Nodes and
Globus.

• Several attendees discussed the advantages of common tools for the same analysis processes
at multiple facilities. A suggestion was made for multiple facilities to each donate a person to an
effort focused on building tools for common tasks that could be deployed and supported at multiple
facilities. These might be integrated into “superfacility” workflows.

• There was significant discussion at the review about data policies, and the uncertainty surrounding
the long-term responsibility for data archival and the costs associated with it. The DOE program
managers indicated a preference for the facilities to self-organize around a set of solutions for data
rather than wait for an edict from headquarters.

• The use of Globus rather than physical transport of portable media for data transfers at ALS beam-
line 8.3.2 has significantly reduced the difficulties associated with data transfer for the users that
are able to use Globus. These benefits accrue both to the users and to the beamline support staff.

• Data Transfer Nodes and Globus have been very helpful for data management at NCEM. It is
expected that this would be helpful for other microscopy centers as well, especially for handling
the dramatically larger data sets produced by state-of-the-art cameras (e.g. 16TB in 15 minutes
at NCEM). In the coming years, NCEM plans to move much of its data management and data
analysis workload to large HPC facilities (e.g. NERSC).

• A significant amount of data is transferred from the LCLS to a group at DESY in Germany. Histor-
ically, data transfer rates had been too slow, but the deployment of Globus has improved things
(they are now able to transfer 8TB in 2 days). While these data rates are not as fast as they could
be, it appears that data transfers are no longer a matter of concern for this group.

• Representatives from several facilities expressed an interest in collaborating together and with
ESnet on the development of materials to give users a background in data transfer tools. This
“network on-boarding” process has the potential to significantly improve the use of beam time by
training users in the use of modern data transfer and data management tools.
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• SLAC and NERSC are collaborating on the use of large-scale computing at NERSC in support of
the experiments done at the LCLS. This is likely to drive increased network usage between these
facilities in the future.

• Long-term archival storage is a concern for some facilities. Several options are being explored,
including the use of cloud storage (e.g., Amazon Glacier).

• Federated identification for facility users would solve several problems at multiple facilities, includ-
ing data access, access management, and the reduction of IT costs associated with supporting
users.

• Software tools (e.g., workflow or analysis packages) that provide “information rather than data” to
scientists are of significant value. However, these software tools often face challenges for sustain-
able maintenance after the development phase. This is currently an unsolved problem.

• At the Combustion Research Facility, data transfers scale according to the resources involved—
large data sets are transferred from the national computing facilities to the local clusters at the
CRF, and smaller data sets are transferred to home institutions or laptops for further analysis.

• There is a synergistic relationship between combustion simulations and experiments. Experiments
can be used to extend the capabilities of a model (e.g., provide experimental results for an area in
which a model is weak or unstable), and the resultant improved model then shows where the next
experiments are needed.

• There are common users between the light and neutron sources—for example, 7% of APS users
also use the SNS. Many scientists find it useful to get both an X-ray and a neutron characterization
of a sample material. NOMAD proposals have a reciprocity agreement with the APS for those
cases where X-ray work would provide additional benefit to a neutron experiment.

• The data analysis code or experiment support code required for a particular experiment may not
run well (or run at all) on the computing resource available at the experimental facility. In these
circumstances, it is necessary to move the data to the computation because the computation
cannot be effectively moved to the data.

• It is very useful to have both the simulations and experiments associated with a particular scientific
project produce and consume the same file formats. The Mantid framework does this, and some
tools use the Nexus file format for both simulation and experiment.

• The neutron sources are unlikely to see the same level of increase in data rates and volumes as
the light sources are expected to see. A factor of two or three increase is expected, but not an
order of magnitude or two.
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Action Items

Several action items for ESnet came out of this review. These include:
• ESnet will work with the Reactive Molecular Dynamics Simulations of Materials group at the Uni-

versity of Southern California to get a Globus data transfer node deployed there.
• ESnet will work with the Combustion Research Facility on data transfers with collaborating institu-

tions, including the exploration of Globus.
• ESnet will work with the APS and other light sources to help identify major users from institutions

that have recieved CC-NIE or CC*IIE grants from the NSF.
• ESnet will include the SNS in the development of “data onboarding” materials for facility users.
• ESnet will work with the NSLS-II facility to organize a site visit by ESnet staff for further discussion

of data and science engagement topics.
• ESnet will work with scientists at Georgetown University on data transfer performance to national

and international collaborators.
• ESnet will continue to develop and update the http://fasterdata.es.net site as a resource for the

community.
• ESnet will continue to assist sites with perfSONAR deployments and will continue to assist sites

with network and system performance tuning.
• ESnet will continue to support the development and deployment of perfSONAR.
• ESnet will continue to support the development and deployment of the ESnet On-demand Secure

Circuits and Advance Reservation System (OSCARS) to support virtual circuit services on the
ESnet network.
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ESnet SC Requirements Review
Background and Structure

Funded by the Office of Advanced Scientific Computing Research (ASCR) Facilities Division, ESnet’s
mission is to operate and maintain a network dedicated to accelerating science discovery. ESnet’s
mission covers three areas:

1. Working with the DOE SC-funded science community to identify the networking implications of
instruments and supercomputers and the evolving process of how science is done.

2. Developing an approach to building a network environment to enable the distributed aspects of
SC science and to continuously reassess and update the approach as new requirements become
clear.

3. Continuing to anticipate future network capabilities to meet new science requirements with an
active program of R&D and advanced development.

Addressing point (1), the requirements of the SC science programs are determined by:
(a) A review of major stakeholders’ plans and processes, including the data characteristics of scientific
instruments and facilities, in order to investigate what data will be generated by instruments and super-
computers coming online over the next 5–10 years. In addition, the future process of science must be
examined: How and where will the new data be analyzed and used? How will the process of doing
science change over the next 5–10 years?
(b) Observing current and historical network traffic patterns to determine how trends in network patterns
predict future network needs.
The primary mechanism for accomplishing (a) is the SC Network Requirements Reviews, sponsored by
ASCR and organized by the SC Program Offices. SC conducts two requirements reviews per year, in a
cycle that repeats every three years:
The primary mechanism to accomplish (a) is through SC Network Requirements Reviews, which are
organized by ASCR in collaboration with the SC Program Offices. SC conducts two requirements re-
views per year, in a cycle that assesses requirements for each of the six program offices every three
years.
The review reports are published at http://www.es.net/requirements/. The other role of requirements
reviews is to help ensure that ESnet and ASCR have a common understanding of the issues that face
ESnet and the solutions that it undertakes.
In August 2014, ESnet organized a review in collaboration with the BES Program Office to characterize
the networking requirements of science programs funded by Basic Energy Sciences.
Participants were asked to codify their requirements in a case study format that included a network-
centric narrative describing the science, instruments, and facilities currently used or anticipated for future
programs; the network services needed; and how the network is used. Participants considered three
timescales in their case studies: the near-term (immediately and up to two years in the future); the
medium-term (two to five years in the future); and the long-term (greater than five years in the future).
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The information in each narrative was distilled into a summary table, with rows for each timescale and
columns for network bandwidth and services requirements. The case study documents are included in
this report.
Participants were asked to codify their requirements in a case-study format that included a network-
centric narrative describing the science, instruments, and facilities currently used or anticipated for fu-
ture programs; the network services needed; and how the network is used. Participants considered
three timescales in their case studies: the near-term (immediately and up to two years in the future);
the medium-term (two to five years in the future); and the long-term (greater than five years in the fu-
ture).
More specifically, the structure of a case study is as follows:

• Background—an overview description of the site, facility, or collaboration described in the case
study

• Collaborators—a list or description of key collaborators for the science described in the case study
(the list need not be exhaustive)

• Near-term Local Science Drivers—a discussion of science drivers that have network implications
for the local infrastructure at the primary site or institution of the case study. The time period for
“near-term” is 0-2 years. A good way to think about the “near-term” time scale is as the current
set of circumstances, along with the current two-year budget time horizon. This section has two
subsections—instruments and facilities, and process of science.

– Instruments and Facilities—this describes the “hardware” of the science of the case study.
Instruments and facilities might include detectors, microscopes, supercomputers, telescopes,
fusion reactors, or particle accelerators. The instruments and facilities view of the case study
provides the information about data rates, data volumes, location of data, origin of data, and
so forth.

– Process of Science—this section describes the ways in which scientists use the instruments
and facilities for knowledge discovery. The process of science section captures aspects of
data flow, instrument duty cycle, data analysis, workflow, and so forth.

– Software Infrastructure—this section describes the software used to manage the daily activ-
ities of the scientific process in the local environment. It also includes tools that are used to
locally manage data resources, facilitate the transfer of data sets from or to remote collabo-
rators, or process the raw results into final and intermediate formats.

• Near-term Remote Science Drivers—a discussion of science drivers that are not local to the pri-
mary site or institution of the case study. These typicall involve the use of the wide area network for
some purpose (data transfer, remote control, remote access, etc). The time period for “near-term”
is 0-2 years, as above. This section has two subsections—instruments and facilities, and process
of science.

– Instruments and Facilities—this describes the “hardware” of the science of the case study as
above, except from a non-local perspective. Examples might include the use of remote HPC
resources, or a particle accelerator at another facility.

– Process of Science—this section describes the process of science as it pertains to the use
of remote instruments and facilities.

– Software Infrastructure—this section describes the software used to manage the daily activ-
ities of the scientific process in the wide area environment. It includes tools that are used to
manage data resources for the collaboration as a whole, facilitate the transfer of data sets to
or from remote collaborators, or process the raw results into final and intermediate formats.
The objective is to capture the software tools that move data over the network.

• Medium-term Local Science Drivers—similar to near-term local science drivers, but with a time
horizon of 2–5 years in the future. A good way to think of this is that the medium-term view in-
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corporates the current technological paradigm or facility environment, rather than just the current
budget horizon.

– Instruments and Facilities—local instruments and facilities, with a 2–5 year time horizon.
Specifically, what will change in the next 2–5 years?

– Process of Science—local process of science, with a 2–5 year time horizon. Specifically,
what will change in the next 2–5 years?

– Software Infrastructure—local software infrastructure, with a 2–5 year time horizon. Specifi-
cally, what will change in the next 2–5 years?

• Medium-term Remote Science Drivers—similar to near-term remote science drivers, but with a
time horizon of 2–5 years in the future.

– Instruments and Facilities—remote instruments and facilities, with a 2–5 year time horizon.
Specifically, what will change in the next 2–5 years?

– Process of Science—remote process of science, with a 2–5 year time horizon. Specifically,
what will change in the next 2–5 years?

– Software Infrastructure—remote software infrastructure, with a 2–5 year time horizon. Specif-
ically, what will change in the next 2–5 years?

• Beyond Five Years—this describes the strategic planning horizon, including new facilities, major
technological changes, changes in collaboration structure or composition, etc.

• Network and Data Architecture—this section describes the use of specific networking resources
(e.g., a Science DMZ) and how those resources are structured in the context of the science. In
addition, if changes would significantly impact the science, they can be captured here.

• Data, Workflow, Middleware Tools and Services—anything not captured in the software infrastruc-
ture section can be captured here.

• Outstanding Issues—if there are current problems that should be brought to ESnet’s attention,
they are captured here.

The information in each narrative was distilled into a summary table, with rows for each timescale and
columns for network bandwidth and services requirements. The case study documents are included in
this report.
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Office of Basic Energy Sciences
Overview

Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately
control matter and energy at the electronic, atomic, and molecular levels in order to provide the founda-
tions for new energy technologies and to support DOE missions in energy, environment, and national
security. The BES program also plans, constructs, and operates major scientific user facilities to serve
researchers from universities, national laboratories, and private institutions. The BES program is one
of the Nation’s largest sponsors of the natural sciences and it funds experimental, computational and
theoretical research at more than 160 research institutions through three divisions.
The Materials Sciences and Engineering (MSE) Division supports fundamental experimental and theo-
retical research to provide the knowledge base for the discovery and design of new materials with novel
structures, functions, and properties. This knowledge serves as a basis for the development of new
materials for the generation, storage, and use of energy and for mitigation of the environmental impacts
of energy use. The Chemical Sciences, Geosciences, and Biosciences (CSGB) Division supports ex-
perimental, theoretical, and computational research to provide fundamental understanding of chemical
transformations and energy flow in systems relevant to DOE missions. This knowledge serves as a basis
for the development of new processes for the generation, storage, and use of energy and for mitigation
of the environmental impacts of energy use.
The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and operation
of scientific user facilities for the development of novel nanomaterials and for materials characterization
through X-ray, neutron, and electron beam scattering; the former is accomplished through five Nanoscale
Science Research Centers and the latter is accomplished through the world’s largest suite of synchrotron
radiation light source facilities, neutron scattering facilities, and electron-beam microcharacterization
centers.
The Office of Basic Energy Sciences in the U.S. Department of Energy’s Office of Science has also es-
tablished 46 Energy Frontier Research Centers (EFRCs). These Centers involve universities, national
laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, and were selected by
scientific peer review and funded at $2–5 million per year for a 5-year initial award period. These inte-
grated, multiinvestigator Centers will conduct fundamental research focusing on one or more of several
“grand challenges” and use-inspired “basic research needs” recently identified in major strategic plan-
ning efforts by the scientific community. The purpose of these Centers will be to integrate the talents and
expertise of leading scientists in a setting designed to accelerate research toward meeting our critical
energy challenges. In addition to the EFRCs, the BES-Funded Joint Center for Artificial Photosynthesis
(JCAP) is led by the California Institute of Technology (Cal Tech) in partnership with the U.S. Depart-
ment of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), will bring together leading
researchers in an ambitious effort aimed at simulating nature’s photosynthetic apparatus for practical
energy production.
In September 2010 ESnet and the Office of Basic Energy Sciences (BES), of the DOE Office of Sci-
ence, organized a workshop to characterize the networking requirements of the programs funded by
BES. The requirements identified at the workshop were reported in a final report found on the ESnet
website: http://es.net/assets/Uploads/BES-Net-Req-Workshop-2010-Final-Report.pdf. Since then, and
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as highlighted throughout the following pages, the data sets generated and used by BES scientists con-
tinued to increase in size and Internet access to these data sets continued to be a vital requirement
that is fulfilled by ESnet. In order to assess the increasing challenges and needs, a new workshop was
organized ands the results and studies are presented here. The studies herein illustrate this case for
theoretical, computational and experimental fields of inquiry and provide a means for understanding
how availing future data to the larger community is coupled to future network needs. This workshop has
identified a number of issues that ESnet can help address for the coming years.
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Case Studies
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Case Study 1

Advanced Light Source

1.1 Background

Operated since 1993, the Advanced Light Source (ALS) is a third-generation synchrotron and National
User Facility located at the Lawrence Berkeley National Laboratory (LBNL). The ALS operates about 40
beamlines simultaneously with an approximate 60% operational duty cycle, operating over 5000 hours
per year. It produces some of the brightest ultraviolet and soft X-ray beams in the world, as well as
intense hard X-rays and infrared (IR) beams. It has about 200 staff, an annual operating budged of
around $60 million, and an output of more than 800 refereed publications per year.

1.2 Collaborators

The ALS hosts over 2,000 distinct users annually from around the world and from diverse fields of science
(see Figure 1.1).
The ALS itself runs the majority of its beamlines, but a number of other organizations either run beamlines
or are significant participants as users or leaders. These include:

• Berkeley Center for Structural Biology
• Center for X-ray Optics
• LBNL Chemical Sciences Division

1.3 Near-term Local Science Drivers

1.3.1 Instruments and Facilities

At each beamline, X-rays, UV, or IR light are directed at a sample, and some kind of signal is detected.
Signals include transmission, reflectance, fluorescence, scattering, etc. Detectors can be either a single
element or array detectors.
Detectors are connected to beamline control computers. A majority of control computers at the ALS
are Windows systems. In some cases, the beamline control computer both triggers data acquisition by
the detector and then receives the image or signal data from the detector. In other cases, the control
computer triggers data acquisition and a separate, dedicated computer or server receives the detector
data. In either case, data is usually transferred to another storage server or device, most often located
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ADVANCED LIGHT SOURCE   2014 

QUICK FACTS

The Advanced Light Source (ALS) is a third-generation syn-
chrotron, a specialized particle accelerator that generates 
bright beams of x rays for scientific research. It is located in a 
building originally designed in the 1930s by Arthur Brown, Jr.—
architect of the Coit  Tower in San Francisco—to house Ernest 
O. Lawrence’s 184-inch cyclotron. In 1987, a $99.5-million con-
struction project, funded by the US Department of Energy’s Of-
fice of Basic Energy Sciences, began to reconfigure the building 
to accommodate the ALS accelerator and beamlines. Completed 
in 1993, the ALS is a national user facility that now attracts more 
than 2000 researchers and students annually from around the world.

HOW THE ALS WORKS:
Electron bunches traveling nearly the speed of light, when 
forced into a circular path by magnets, emit bright ultraviolet 
and x-ray light that is directed down beamlines to experiment 
endstations.

FACILITY FACTS
20 ~200 >800 $60M 5000 39 

HOW BRIGHT IS IT?
The ALS produces light in the x-ray 
region of the electromagnetic 
spectrum that is one billion times 
brighter than the sun. This extraor-
dinary tool offers unprecedented 
opportunities for state-of-the-art 
research in biology, chemistry, 
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Figure 1.1: ALS user statistics.

directly at the beamline. In the new ALS User Support Building completed in 2010, which is adjacent
to (and connected to) the ALS, there is a server room. Some beamlines have moved storage and
processing servers to that room. In general, storage servers are not shared across multiple beamlines—
each beamline has its own storage system. Users of a beamline usually copy their data from the storage
server to portable media, usually USB media (though in some cases beamlines do not have a separate
storage server and users access data directly from the control computer).
Most beamlines have some kind of data processing capability either at their beamline or in the ALS User
Support Building server room. In some cases the processing is done at workstations at the beamline
with access to the beamline’s storage server.
The ALS also has a new Visualization and Analysis Laboratory that has six high-end desktop worksta-
tions and has been connected to the storage servers of multiple beamlines. In some cases, beamlines
have small CPU and/or GPU computing clusters at the beamline or in the server room. These clusters
are beamline specific rather than shared across beamlines. The protein crystallography beamlines each
have compute clusters, as do the microdiffraction, small-angle X-ray scattering (SAXS) to wide-angle
X-ray scattering (WAXS), and ptychography beamlines.
Results from a survey given to ALS beamline scientists were compiled into an interactive data workflow
model as depicted in Figure 1.2.1

In this figure, a column represents each step in the data flow, with the height of the column being propor-
tional to the square root of the transfer rate. By compiling results from a survey into this tool, the website
creates a model for data production at the ALS, allowing characterization of the limiting factors in the
data rates at the various beamlines. It also enables forecasting of data rates under different upgrade
scenarios.
A number of simplifying assumptions were made in constructing this data flow model. One important
assumption is that all raw data is immediately transferred a single time from one step to the next; data
processing that either reduces or enlarges the amount of data is ignored, and buffering of data between
steps is not considered. Of course, most beamlines also run in multiple modes, and except for a few
cases, this model does not capture those different modes and just uses one representative mode. The
assumptions for this model are meant to create a simple model for insights into ALS beamline data
flows.

1An interactive version of this display is available at: http://bl832web.lbl.gov/esnet where a CSV version of the underlying data is
also available. A google doc with the underlying data is also available at: https://docs.google.com/spreadsheets/d/1tJgtz2PgbOL_
PRf0LSHEiUIvOPGBuF9cAVRX-Y05dDY/edit?usp=sharing.
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ALS Case Study for ESnet Network Requirements Review, September 2014
Please scroll down to see assumptions and explanations
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Figure 1.2: Screen shot of survey results displayed at http://bl832web.lbl.gov/esnet. Interface shows the ALS
beamline name, exposure, dector, LAN, WAN, overall maximum, average during operations, overall average, and
total data rate per year. Color coding of the first four columns highlight the limiting factors for data rates at each
beamline: from highest to lowest data rates the colors are green, yellow, orange, and red.
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The columns in Figure 1.2 from left to right represent:
• Exposure: data rate as limited by “exposure time.” To determine this column, we assume the

current detector (in number of pixels and bits/pixel) but with infinite readout speed. Most beamline
take scans of a single sample, either moving the sample or changing some beamline or sample
parameter during a scan. In many cases, actual exposure time (time during which the detector
accumulates counts) is the main contributor to limiting this data rate. In other cases, a beamline
also has significant contributions in this column from the time required to move beamline or sample
motors between successive shots during a scan. This column does NOT take into account time to
change between samples.

• Detector: data rate as limited by detector readout to the acquisition computer or camera server,
assuming the shortest possible exposure time allowed by the detector.

• Local-area network (LAN): data rate as limited by connection from the acquisition computer or
camera server to the storage server.

• Wide-area network (WAN): data rate as limited by connection from the storage server to the WAN.
• Overall Max: maximum data rate as limited by the smallest of the preceding items.
• Ave During Ops: average data rate during operation, given by the Overall Max multiplied by a

beamline-specific duty cycle for beamline setup and sample changing.
• Overall Ave: average data rate, given by the Ave During Ops multiplied by duty cycles for shared

beamlines (variable) and for ALS light available ( 60%).
From the model, it can be deduced that the factor that most limits the overall maximum data rate of a
beamline is shown in red. For the majority of beamlines though, the Exposure column is the limiting
factor, and the Detector is the second-most common limiting factor.
In collecting data for this chart, beamline scientists were asked about their annual data production rate,
and values for sample scanning, changing, and beamline setup were adjusted to yield that value within
a factor of 3. In the top right hand corner of the chart, the ALS-wide maximum and average data rates
are given. This indicates that the current rate of data production at the ALS (given all the assumptions
listed above, and to within a factor of 3) is 1.5 PB/year. Note that this number is significantly higher than
the expected ALS outbound network traffic. See Section 1.4 for further discussion.

1.3.2 Software Infrastructure

A majority of the beamline control computers at the ALS run a LabVIEW-based control system. The ALS
Controls group writes and maintains the core software, and they then customize it for each beamline.
In many cases, the customization is done in collaboration with the staff of each beamline. In terms of
the software interface for data acquisition from the detector, this is sometimes done directly through
LabVIEW, but a number of beamlines also use commercial software that accompanies their detector for
data collection.
Most beamlines have data processing capabilities on workstations located at the beamline or available
in the ALS Visualization and Analysis Lab. Users run a huge variety of software even at one beam-
line, making standardization and automation a challenge. In most cases, users manually run each
processing step on their data. The protein crystallography beamlines have the most established and
advanced capabilities in the area of automated data processing. The ptychography beamline is devel-
oping this capability, with automated software that runs on a GPU cluster in the ALS server room and
provides real-time image feedback as data is collected. The microdiffraction beamline automatically
runs a cluster version of the X-ray Microdiffraction Analysis Software (XMAS) that has been developed
at the ALS.
Very few beamlines provide any software for data management; in many cases “data management” just
means leaving files on a server until it is full then manually purging old data.
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Figure 1.3: The figures display network traffic in and out of the ALS, as well as whether the ALS is on or off (“on” in
this case refers to user operations mode during which beamlines are collecting data), and if on, whether it is running
under normal operation or in “2-bunch” mode. (a) shows network traffic to and from the ALS over the past year.
(b) shows network traffic over a smaller date range, in August 2014. An overlay shows when the ALS is in normal
operation, 2 bunch, or unavailable for user operations.

A new framework called SPOT Suite, developed as part of a collaboration between the ALS, the LBNL
Computational Research Division, NERSC, and ESnet, has been deployed at three beamlines (SAXS-
WAXS, microdiffraction, and tomography). SPOT Suite provides both data management, data transfer,
and data processing capabilities. Under this framework, data is automatically packaged with meta-
data and sent to a National Energy Research Scientific Computing Center (NERSC) supercomputer for
archiving and processing. (See Section 1.4 for further discussion of SPOT SUITE.)

1.3.3 Process of Science

The local and remote aspects of the process of science at the ALS are described in Section 1.4.3.

1.4 Near-term Remote Science Drivers

1.4.1 Instruments and Facilities

Most beamlines are connected to the wide area network (WAN) through 1 Gbps routers, which in turn
are connected though the ALS 10 Gbps WAN connection. A few beamlines are directly connected to
the 10 Gbps WAN (see online version of Figure 1.2).
ESnet has tracked overall network traffic in and out of the ALS since August 2013. Figure 1.3a shows
this traffic over the year from 1 September 2013 to 1 September 2014, and Figure 1.3b shows traffic
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Figure 1.4: Data transfers from the Beamline 8.3.2 (hard x-ray microtomography) Data Transfer Node over the
same time period as displayed in Figure 1.2. Chart taken from spot.nersc.gov, the SPOT Suite data portal hosted
at NERSC.

during a recent two-week period in 2014.
The network traffic out of the ALS can be attributed to transfer of data collected at the ALS. Although a
majority of users still copy data using portable devices, an increasing number of users are transferring
data to their home institutions over the WAN. This conclusion is supported by Figure 1.3a, which shows
a decrease in network traffic outbound during windows of time when the ALS is shutdown. Note that the
traffic in this figure is shown with a five-day average, so that one- or two-day shutdowns do not correlate
with large changes in network activity.
Figure 1.3b shows a surprising increase in network traffic during a two-day shutdown (around August
25). This can be explained by turning to the data transfer record for Beamline 8.3.2 (hard X-ray microto-
mography), which is shown in Figure 4 for the same time period noted in Figure 1.3b. Normally, as data
sets are collected at that data-intensive beamline, they are packaged by SPOT Suite (see Section 1.3.2)
on the beamline’s data transfer node and sent to NERSC; this transfer is an important contributor to the
WAN traffic out of the ALS. The data transfer node had a problem between August 20 and 23 that
caused a number of collected data sets to not be transferred. This problem was fixed on August 25, and
a backlog of data sets was then transferred on a day in which the ALS was off.
In general, NERSC is the largest recipient of outbound ALS network traffic, though certainly not the only
recipient. For example, the ESnet Arbor system, 2 in Figure 1.5, shows the bulk of the network traffic
out of the ALS on the August 25 was to NERSC.
From Figure 1.3, the network traffic out of the ALS does not appear to have increased in a measureable
way over the past year. On the other hand, historical data about network traffic out of the ALS dating
back to 2008 is available through LBLnet’s RRDTool, which shows that the network traffic has increased.
The increase in ALS outbound traffic seems to be in line with the overall increase in ESnet traffic, which
increases by a factor of 10 about every 4 years.
Staff at the ALS envision some possible scenarios under which there could be a large increase in network
traffic, but in the short term, the facility is expected to continue to produce the current, more modest trend
of increase in outbound network traffic.

2Results from the ESnet Arbor system are available from the My ESnet Portal at https://my.es.net/facility/als/#flow/t=30d&s=
site.
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Figure 1.5: Screenshot from https://my.es.net/facility/als/#flow/t=30d&s=site which gives visualizations of data col-
lected by the ESnet Arbor system.
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Figure 1.6: Network traffic out of the ALS, overlayed with overall ESnet traffic.

1.4.2 Software Infrastructure

Raw images are captured at the ALS along with beamline and user-generated metadata that define
experimental parameters. Data transfer nodes (DTNs) at the ALS, package the raw image files (typically
in tif format) into HDF5 format files where each image is stored as a 2D dataset. The user and system
metadata are attached to the HDF5 file as attributes at the top level, as well as at the dataset level for
image specific metadata. The packaged HDF5 is automatically transferred to NERSC DTNs via ESnet
using the SPADE (South Pole Archival and Data Exchange) data transfer package and GridFTP (a high-
performance, secure, reliable data transfer protocol optimized for high-bandwidth wide-area networks).
The files are archived to the HPSS (High Performance Storage System) tape system and staged onto
NERSC’s GPFS-based (General Parallel File System) global project file system which is accessible to
both data transfer nodes and HPC compute machines.
The HDF5 metadata and hierarchy are registered in a MongoDB database (an open-source document
database, the term Mongo derives from “huMONGOus”) at NERSC. There is a one-to-one correspon-
dence between the HDF5 metadata and the contents of the Mongo database. Analysis on NERSC
HPC computer resources is then automatically initiated. The analysis is broken down into as many as
30 individual steps; concurrency and dependency is managed in a custom workflow engine described
below. Computationally intensive analysis steps are typically run in a data-parallel mode on up to 100
cores. Raw and analyzed data are available to users remotely via a web-portal built on top of NERSC’s
NEWT API (Nice Easy Web Toolkit, Application Programming Interface) as well as custom data APIs
and interfaces built with MongoDB, Django, PHP, JQuery, Bootstrap, HTML5 and WebGL. Users can
access, download and visualize their data without requiring advanced software expertise.
Data managed and transferred by SPOT is now a major contributor to the outbound traffic of the ALS.
The SPOT framework is a prototype software solution for both LAN and WAN data management and
processing that could be deployed across most beamlines at the ALS. If SPOT Suite spreads to more
beamlines, or to the entire ALS, there could be an enormous increase in network traffic out of the ALS,
since significant amounts of data that have not previously been transferred over WAN will begin to be
transferred that way.
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While many beamlines still do not make their data available over the WAN, an increasing number of
beamlines are transitioning to this model. The majority of beamlines that make their data available over
the WAN use software such as ftp or sftp. One beamline (8.3.2, a hard x-ray tomography beamline) has
its storage server set up as a Globus endpoint.
Visualization of large data sets, and in particular 3D data sets, is an enormous challenge in general.
Implementing remote visualization capabilities will be an important development that lets users without
other access to good computational resources take advantage of remote resources. But it is not clear
that this will contribute significantly to network traffic.
A number of beamlines are now allowing remote beamline operation access. In general, this is ac-
complished using NX, VNC, or Remote Desktop, which require relatively low bandwidth. There are no
special video conferencing needs beyond those of other organizations.
To take advantage of the increasing speed of data collection, there is an increasingly urgent need for
tools to manage data workflows.

1.4.3 Process of Science for Local and Remote Science

As noted in the discussion of Figure 1.2, data transers play a large part in the local and remote processes
of sceince at the LAS. And, related to our simple model, there are three more questions underlying the
assumptions from the simple data flow model:

• Where does data processing happen?
• Which data is saved and/or transferred from one location to another?
• When does data processing happen?

Here, by “data processing” we simply mean any operation on the data. For example, this could be image
compression, it could be peak finding, or it could be tomographic reconstruction.
Where
Data processing can happen at the detector, on the beamline control computer, on processing clusters
at the beamline or ALS server room, or offsite. In some cases, processing greatly reduces the quantity
of data that is carried to the next step. This is the case, for example, in protein crystallography, microd-
iffraction, and ptychography. In others cases, such as tomography, data processing produces results
that are even larger than the original data sets.
Which
In cases where a data processing pipeline has been refined, users do not necessarily save all raw data,
meaning that only the results are stored and transferred over the network. But in most cases at the ALS,
data processing pipelines are still in development, and users prefer to keep both raw and processed data
in case a new and improved algorithm becomes available allowing additional extraction of information
from their data.
When
Data processing is sometimes required in “real time,” meaning that results of the processing must be
produced and presented to the user during their beamtime so that they can make decisions about how to
proceed with their experiment. “Real-time” for the ALS is usually on the time scale of minutes, since that
is the time between scans for many beamlines. In some cases, such as the new ptychography beamline,
“real-time” results based on processing on a GPU cluster are expected within a matter of seconds to
guide users during sample setup. Most often, however, only a minimal amount of processing is really
required in real time to guide the experiment, while a significant amount of the processing can take place
in the days or weeks following beamtime.
The location at which processing is done, which data are saved and transferred, and the time window
in which results are expected all have an enormous impact on the ALS network requirements. The
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Table 1.1: Predicted data rates for different scenarios, under the assumptions that are described for the model in
Figure 1.2.

Which Beamlines Upgrade Scenario Max Gbps Operating Ave. Gbps Overall Ave. Gbps
Current Current 7.24 0.91 0.43
Current 10G LAN/WAN 7.57 0.92 0.44
Current Detectors 5x 13.94 0.95 0.44
Current Exposure 5x 10.37 0.95 0.44
Current Sample 5x 7.24 1.59 0.68
Current All 5x+10G LAN/WAN 34.56 2.98 1.31
Current+New Current 25.84 3.22 1.81
Current+New All 5x + 10G LAN/WAN 81.58 8.43 4.68

most network-intensive scenario is if all processing is done off-site, and results are needed in real time.
In this scenario, sufficient bandwidth is required to handle the maximum data rate from all beamlines
simultaneously. A more realistic scenario is that some data reduction is performed on-site; a subset
of collected data is processed offsite; and only a subset of the processed results are needed for real-
time feedback, meaning that the required bandwidth is closer to the average data rate of the ALS after
accounting for sample change and ALS duty cycles.
We note that the process of science is not the same across beamlines, which are generally independent
of each other and operate with different approaches.

1.5 Medium-term Local Science Drivers

1.5.1 Instruments and Facilities, Software Infrastructure, and Process of Sci-
ence

There has been little increase in network traffic out of the ALS over the past few years. In contrast, based
on interviews with beamline scientists, the amount of data being produced by the ALS is increasing
rapidly. There is clearly a disconnect between the data production rate of the ALS and the network
traffic out of the ALS.
SPOT Suite has the greatest potential to impact network traffic out of the ALS because it would suddenly
couple ALS data production to network traffic. The web visualization referenced in Figure 1.2 allows
different scenarios to be explored, within the context of the assumptions in the model—this would be
a simplistic implementation of SPOT Suite across all beamlines at the ALS, where all data would be
transferred to NERSC for processing.
The current maximum, operating average, and overall average data rates are 7.24, 0.91, and 0.43 Gbps
respectively. Although most of the ALS is on 1Gbps connections, upgrading all LAN and WAN connec-
tions in the ALS to 10Gbps would have only a tiny effect on network traffic because these are not the
limiting factors. Upgrading all detectors to have better readout speeds by a factor of 5 at each beamline
would increase the rates to 13.94, 0.95, and 0.44 Gbps. In other words, the maximum possible data rate
would increase significantly, but due to other factors, the overall data rate would remain approximately
the same. Similarly, upgrading the ALS source and/or all beamline optics to reduce exposure times by a
factor of 5 would result in data rates of 10.37, 1.26, and 0.63 Gbps. And upgrading or automating sample
handling so as to decrease sample change times by a factor of 5 results in data rates of 7.24, 1.59, and
0.68 Gbps. More significant increases come if all of the upgrades mentioned are combined, giving rates
of 34.56, 2.98, and 1.31 Gbps. Table 1.1 shows a list of these data rates for different scenarios, and
Figure 1.7 shows a few of these scenarios plotted on the historic data rate graph from Figure 1.6.
New beamlines that are expected to come on line in the next two years will have an even larger impact
than the upgrades mentioned so far. Two of them, Cosmic and IR, are each expected to have an
enormous impact on ALS data rates. Importantly, both of these beamlines are in discussion with the
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Figure 1.7: Plot of data rates with some projected scenarios.

SPOT Suite team, and it is likely that data from those beamlines will be transferred to NERSC under that
system. If no upgrades are considered, but the additional beamlines are added as they are currently
planned, data rates will increase to 25.84, 3.22, and 1.81 Gbps. If all upgrades are added on top of
these new beamlines, data rates will increase to 81.58, 8.43, and 4.68 Gbps.
Given the assumptions in the model, these numbers should be seen as an upper bound on network
traffic out of the ALS. Upgrading detectors, exposure times, sample changing, LAN, or WAN across the
ALS would be expensive. On the other hand, it is likely that these upgrades will take place on a few of
the beamlines which are already the most data intensive, making the numbers more realistic.
Of course, it is often difficult to predict the changes that will come as data rates continue to increase
based on simple extrapolation. One protein crystallography beamline scientist pointed out an interesting
trend at his beamline, which fits into this category. As that beamline upgraded their detector and sample
handling in the last few years, they have greatly increased the rate at which data can be collected.
Previously a user might not have collected data on every crystal, instead only investing the time for data
collection in the best crystals. Now, the time for data collection has been reduced to the point that many
users prefer to collect data on every crystal, and use new algorithms that are being developed to extract
partial information and combine that with partial information from other crystals. This means that not only
is the maximum possible data rate from the detector much higher than before due to the detector and
sample change upgrades, but the average data rate has increased even more due to an accompanying
change in the data collection and processing approach.
By a combination of locating some computing resources for real-time processing on site at the beamlines
or in the ALS User Support Building server room, data reduction, and selective data saving, the number
most relevant for ESnet planning is likely the overall average traffic rather than the maximum or operating
average. On the other hand, the computational needs of the new beamlines are expected to be quite
high. There is some chance that scientists would want computational resources beyond what is possible
on site at the ALS, and there is some chance that they would want the results of these computations in
“real time.” In this scenario, the operating average would be relevant for ESnet planning.
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Case Study 2

Advanced Photon Source

2.1 Executive Overview

The Advanced Photon Source (APS) located at Argonne National Laboratory (ANL) produces large vol-
umes of data on the order of 1.5–2 PB/year. New detector technology will increase this as much as an
order of magnitude in a few years. Computer networking is a cornerstone technology for operation of
the APS facility. Some key needs for that include: transfer of large datasets to user labs or computing
centers for remote analysis in a reliable and timely manner; remote instrument operations, which re-
quire relatively modest data transfer rates, but minimal data latency and very high reliability; and remote
interactive access for visualization and data analysis, which is more tolerant of latency but has more
demanding data rates. All scientists would benefit from more advanced conferencing and data sharing
platforms that would improve collaboration without a need for travel. To satisfy all these needs, a flexi-
ble high-capacity “smart” network is needed that can optimize and prioritize connectivity to match task
demands.

2.2 Background

The APS at ANL is a synchrotron light source that serves as the nation’s premier facility for scientific
and engineering research using hard X-rays (Figure 2.1). In fact the facility hosts experiments spanning
a wide range of photon energies from about 0.3 keV up to 130 keV, and even as other light sources are
brought online, it will remain the brightest X-ray source in the Americas for experiments at energies of
15 keV and above.
The APS began operations around 1995, with a set of beamlines 1 that has grown to about 66 today
(Figures 2.2 and 2.3). More than half of these are operated by the X-ray Science Division of the APS,
and the rest are operated by Collaborative Access Teams or CATs involving partnerships between uni-
versities, research laboratories, and industry. The number of beamlines continues to grow, with the
most recent being the Dynamic Compression Sector beamline built by a team led by Washington State
University with funding from the National Nuclear Security Agency.
The APS is now in the detailed planning stages for a proposed Upgrade based on an August 2013 Ba-
sic Energy Sciences Advisory Committee (BESAC) report2 which recommended that the United States
pursue the development of “diffraction-limited storage rings with beamlines, optics, and detectors com-
patible with the 102–103 increase in brightness afforded by upgraded storage rings.” This will translate
directly to new scientific capabilities. The Multi-Bend Achromat (MBA) lattice upgrade being planned

1The term used for each X-ray beam transport system and experimental endstation that can operate simultaneously
2The Basic Energy Sciences Advisory Committee (BESAC) report from August 2013 is available at http://science.energy.gov/

~/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf.
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Figure 2.1: Aerial view of the APS at ANL. The Advanced Protein Characterization Facility (APCF) is at lower left,
while the Center for Nanoscale Materials (CNM) is at middle left.

would involve a shutdown for about one year to replace the storage itself, and to build several beam-
lines and upgrade others to take advantage of the improved source. At the time when this proposed
upgrade is completed (possibly around 2021), the APS is expected to be the brightest storage ring X-ray
facility worldwide at photon energies above about 3 keV.
Synchrotron light sources serve very diverse scientific communities. Many of the 66 beamlines are op-
timized for one particular X-ray technique or measurement type. For example, adjacent beamlines at
the facility might have a detector development company testing a new detector, followed by researchers
from General Electric studying the failure mechanisms of aircraft turbine blades, next to paleontolo-
gists studying the internal structure of a rare fossil, near to medical school researchers examining the
localization of cancer drugs within cells. Most of these separate research uses involve specific X-ray
techniques with their own data volumes and software tools for analysis. Even among similar techniques,
there may be differences between beamlines operated by different APS or CAT groups. It is more effi-
cient to develop common data formats, data management systems, and analysis tools where possible,
and more beamlines are moving in this direction as certain key software packages emerge. This also
helps drive scientific and technical cross-fertilization between beamlines. Still, the APS presents a highly
heterogeneous environment in its scientific research, institutions, and computing.

2.3 Collaborators

The APS serves almost 6,000 users per year, carrying out almost 25,000 experiments per year (Fig-
ure 2.4). Some experiments require days or even weeks of dedicated time such as when one is devel-
oping a new method or recording exceptionally weak signals over a range of parameter space, while
others take only minutes with robotic systems used to change samples for the next experiment. In the
latter case, an increasing number of users are able to work in an offsite mode, where they ship the
sample to be studied and then either operate the beamline remotely (for example, in macromolecular
crystallography) or simply allow an automated data collection system to carry out the measurements
(some powder diffraction experiments are carried out in this manner).
As noted, the scientific communities served by the APS are quite diverse. In Figure 2.5, we show both
the scientific categorization of APS experiments, and also the agencies that fund the various research
programs (nearly all of the main US research funding agencies). Industry users include those in petro-
chemistry (in particular, for studies of catalysts), in materials development (transportation materials as
noted above, polymers such as at the DND-CAT beamline with Dow and DuPont as partners, or semicon-
ductor materials), and in the pharmaceutical industry (Eli Lily operates its own beamline called LRL-CAT,
and several other companies partner together in the operation of IMCA-CAT).
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Figure 2.2: Layout of the APS, showing beamlines in operation or in construction today. The aerial photo of Fig-
ure 2.1 was taken from the perspective of above this image, looking down.
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Figure 2.4: (Left) Number of individual researchers making use of the APS by fiscal year. Most researchers travel
to the APS for their experiments (onsite badged users), but an increasing number are able to work as offsite users
where they ship a sample and carry out their measurements via network connections with local staff overseeing
beamline operation. (Right) Number of experiments carried out at the APS by fiscal year.
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(a)

(b)

Figure 2.5: APS researchers by scientific area (left) and by funding source (right). The APS serves a very diverse
set of scientific and engineering communities.
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2.4 Near-term Local Science Drivers

2.4.1 Instruments and Facilities

The APS has a linear accelerator and booster synchrotron used to inject electron bunches into the main
storage ring. These accelerators are all controlled using the EPICS protocol over Ethernet connections,
as managed by the Accelerator Science Division (ASD) of the APS along with the Controls group of the
APS Engineering Support Division (AES).
Beamlines often have dozens of motors, readout electronics, and x-ray detectors that are also controlled
by EPICS, with VME crates commonly used to host particular electronic interfaces. Many x-ray detectors
have specific manufacturer-supplied interfaces. In some cases this may be a specific hardware interface
to a Windows or Linux workstation, but sometimes detector vendors supply a specific detector control
computer, and a data buffer computer.3

APS-operated beamlines are each equipped with one distributed server or “dserv” computer located in
the main APS computer room near the accelerator control room. These computers provide a local boot
capability for beamline EPICS devices and workstations, and in some cases they are the primary data
storage computer for the beamline. Most dserv computers are connected on a local 1 Gbps network,
but some higher data-rate beamlines have a 10 Gbps connection to their dserv. Many beamlines also
have several high-end workstations, and some use their own storage solutions such as Windows file
servers. The total data acquired each month by each beamline is shown in Figure 2.6. We believe that
the aggregate annual data volume of about 1.5–2 PB is as large as that at any DOE user facility in the
United States.
The APS has two larger centralized computer systems. The “orthros” cluster consists of 45 compute
nodes (three GPU-equipped) and 225 TB of Lustre disk storage (orthros has associated with it a smaller,
five-node cluster “blacklab” which is used for testing purposes). The “tao” storage system consists of
only 2 compute nodes, but 240 TB of Lustre disk storage (after RAID6 and hot spare redundancies
are accounted for), and dedicated internal and external transfer nodes. Both systems have Globus
endpoints.
The APS has two 10 Gbps connections to the Argonne central computing facility on one fiber, and
another 10 Gbps connection on a separate physical path. The Argonne central computing facility in
building 240 hosts the Argonne Leadership Computing Facility (ALCF) for which user proposals must
be submitted for access to its four machines: Mira (768000 cores), Cetus (65000 cores), Vesta (33000
cores), or Tukey (1500 cores). ALCF has a total of about 40 PB of storage available. Also hosted in
building 240 is the Laboratory Computing Resource Center with resources available to any Argonne
employee; LCRC includes the machine Blues (5000 cores) and Fusion (2500 cores). Finally, ALCF
and the Globus team have together configured disk storage from a previous generation ALCF machine
(Intrepid) as the data storage system “petrel,” with a Globus endpoint and 1.7 PB of storage available
for DOE facility users, plus management software that permits users to request allocations and then
manage access to data within their allocations.

2.4.2 Software Infrastructure

Because the majority of APS beamlines were built as CAT beamlines by a variety of institutions (Fig-
ure 2.3), and also because of the diversity of scientific communities served by the APS (Figure 2.5),
the software infrastructure of the APS is very heterogeneous. All beamlines use EPICS to control the
undulator source energy and to monitor some APS source parameters, most use EPICS for control of
basic beamline hardware, and many use EPICS for control of their experimental endstations. There are
fewer commonalities in data management, data transfer schemes, file formats, or analysis programs.

3An example is the large Dectris Pilatus3-X-6M system, where Dectris encourages the purchase of their Pilatus Processing
Unit computer system in order to deal with data rates as high as 1.7 GB/s.
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Figure 2.6: Data acquired per month by APS beamline, as reported by each beamline’s person responsible for
computing in summer 2013.

While we have available a separate document with specific case studies from several beamlines, we
summarize here the trends:

• Many beamlines use locally-developed software programs for data acquisition and analysis. Data
files are often saved as ASCII text for simple spectra, or Tagged Image File Format (TIFF) files if
area detectors are used.

• The dominant data management solution is for beamline scientists to record metadata about ex-
periments in paper logbooks, and to transfer data to users via portable hard drives.

• Macromolecular crystallography presents a uniquely unified community due to the near-identical
nature of data collection and processing among all experiments. Efforts such as the Protein Data
Bank,4, dating back to 1971, and CCCP4,5 dating back to 1979, have helped provide common
data file formats and subroutine libraries for the standard sequence of operations used in obtaining
molecular structures from x-ray diffraction data. Many macromolecular crystallography beamlines
provide remote operations for experiments, and distribute data via their own ftp servers.

• A small but growing number of beamlines are using Globus services6 for data distribution, syn-
chronization, and/or sharing. Several are helping the Globus team test out additional tools such
as the Globus Catalog, which is intended to allow for easy searchability of data files based on a
database formed from experimental metadata.

• The majority of large data sets come from pixelated area detectors, and most of these use an
EPICS-based framework called AreaDetector for their control and data acquisition.7 The frame-
work has been developed by a CAT team (CARS) lead by University of Chicago, and implemen-
tations for various detectors have been developed by CARS, the APS, and by other light sources
such as Diamond in the UK.

4www.rcsb.org
5www.ccp4.ac.uk
6www.globus.org and Foster, IEEE Internet Computing (May/June), 70-73 (2011)
7See cars.uchicago.edu/software/epics/areaDetector.html.
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• A small but growing number of beamlines are using Hierarchical Data Format 5 (HDF5)8 as their
basic file structure. Several beamlines are now using a schema called Scientific Data Exchange9

for organizing their HDF5 files for both raw and analyzed data. With tomography in particular, this
schema is spreading to other facilities. One user from the Materials Science Division and one APS
beamline use the NeXus schema10 for HDF5 file writing.

• An Argonne LDRD is supporting a pilot project for automatic data management. The goal of this
project is to use the APS user database (APS badge numbers) to create Globus accounts, and
the APS Experimental Safety Approval Forms (ESAFs) to create Unix groups into which data are
placed. The pilot project is testing Spade11 for automating the migration of data from beamline
computers to Globus endpoints. The goal is to remove the burden of data management from the
shoulders of beamline scientists, so that users will automatically have a Globus account where
they can see only the data from experiments where their badge number was listed on the ESAF.
A similar approach to automated data organization has been developed for the high-throughput
“mail-in” program in powder diffraction at the APS beamline 11-BM.

• Argonne has also funded an LDRD as part of a Grand Challenge on Data-Driven Science, to
provide an interactive framework that enables processing of large data sets (20–50 GB) and com-
parison to advanced simulations in real-time on the many beamlines that do not have well-defined
analysis workflows. It can be challenging to develop optimized software when each measure-
ment requires identical analysis steps, but it is even harder when the instrumental configuration is
changed for each experiment and facility users have to tailor their analysis to each scientific prob-
lem. The raw data and harvested metadata are meant to be streamed to a remote server, such as
petrel, and merged to form NeXus files, so that the experimental scientists can perform preliminary
inspections and analysis of the remote data using a customizable Python-based GUI that is run
locally on the beamline. The Swift Parallel Scripting system,12 being developed at the University
of Chicago, ensures that compute-intensive tasks can be performed remotely in real-time without
losing the flexibility of a scripting interface to the data. This is being initially tested in the analy-
sis of single crystal diffuse scattering on Sector 6 and 11. The work is being coordinated with a
BES/ASCR-funded pilot project between Argonne and Oak Ridge National Laboratory to conduct
the joint analysis of x-ray and neutron scattering data; a new diffuse scattering beamline, Corelli, is
now being commissioned at the Spallation Neutron Source. There are also plans to deploy these
developments in high energy diffraction microscopy and grazing incidence small-angle scattering
(GISAXS).

• Several other beamlines have achieved, or are working towards, near-real-time analysis of data.
These projects are described in further detail in a separate document with case studies. However,
some highlights from the report include:

– In x-ray photon correlation spectroscopy at beamline 8-ID, a Hadoop-based analysis system
has been developed. This allows for experimenters to see when they have acquired sufficient
statistics on short-time-scale phenomena, or sufficient correlation times for slower phenom-
ena.

– Beamlines 1-ID and 34-ID both carry out different forms of x-ray diffraction microscopy to map
crystalline domains in materials. They have especially well-developed data handling pipelines
using parallel computing for data reconstruction, and in the case of 1-ID their workflow has
been developed in collaboration with researchers in Argonne’s Mathematics and Computer
Science Division to make use of Swift. The resulting capability allows beamline users to verify
results during experiments.

– Tomography reconstructions at beamlines 2-BM, 2-ID, and 32-ID are now being carried out
using the TomoPy software package developed via Argonne LDRD support.13 This package

8www.hdfgroup.org/HDF5/
9See www.aps.anl.gov/DataExchange/, github.com/data-exchange/, and De Carlo et al., J. Sync. Rad. 21, 1224 (2014).

10www.nexusformat.org
11nest.lbl.gov/projects/spade/html
12swift-lang.org
13github.com/tomopy/, and Gursoy et al., J. Sync. Rad. 21, 1188 (2014).

36

www.hdfgroup.org/HDF5/
www.aps.anl.gov/DataExchange/
github.com/data-exchange/
nest.lbl.gov/projects/spade/html
github.com/tomopy/


has recently been parallelized, allowing for a 700x speedup in processing based on algebraic
reconstruction algorithms.

– With joint support from Advanced Scientific Computing Research (ASCR) and Basic Energy
Sciences (BES) at the Department of Energy (DOE), a toolkit and operating program called
PtychoLib has been developed to speed up ptychography reconstructions by a factor of about
104 using Graphical Processing Units and MPI programming on 128 nodes of the tukey cluster
at ALCF.14 This work has allowed for reconstructed images to be viewed as the experiment
proceeds.

• In the past two years, there have been an increasing number of connections with applied mathe-
maticians and computer scientists in the Mathematics and Computer Science Division at Argonne
to develop new approaches to analyze and understand data acquired at the APS. Examples in-
clude the use of Swift and the development of PtychoLib noted above, as well as a new ASCR-
funded project on Robust Optimization and Modeling for Phase Retrieval (ROMPR) as well as
new collaborations to simulate molecular configurations and compare them with x-ray scattering
measurements (Knight and Bachir; Ferrier and Nealey). Other recent examples include the auto-
mated classification of x-ray fluorescence map data,15 and the application of optimization methods
to x-ray spectromicroscopy analysis.16

Again, the above represent only particular vignettes among a much larger sweep of activities at the APS.
There are also a variety of sophisticated analysis programs developed by users of the APS for their own
research; one challenge is that relatively few of these programs make it back to the facility in a way that
they can be used by other researchers.

2.4.3 Process of Science

In spite of the large size of synchrotron light source facilities like the APS, most experiments are per-
formed by small teams over short visits to the APS. These teams must submit user proposals to the
APS about three months before the earliest possible experiment start time, and oftentimes their beam-
time request cannot be accommodated until the following scheduling cycle four months later. There
are mechanisms for rapid access for preliminary studies, but most physical science experiments involve
this extended planning process, while almost two-thirds of the macromolecular crystallography beam-
time requests are submitted as rapid access proposals.
In synchrotron studies, the science is often in the sample, and research groups may spend some time
synthesizing a material, culturing and treating biological cells, or growing crystals. There is often exten-
sive sample examination done in the home laboratory, including various spectroscopies and/or micro-
scopies, but those data are almost never integrated together with data taken at the APS except through
notations in the experimental team’s logbook. In some cases, simulations might be carried out to design
material synthesis or to test new algorithms that might be used for data analysis, and those can help
guide experiments.
When the scheduled beamtime arrives, a subset of the research team arrives at the APS for their experi-
ment. Depending on the complexity of on-site sample handling, they may arrive several days in advance,
or simply show up the morning when their beamtime is scheduled to start. Depending on previous expe-
rience, some hours may be required to train the user in operation of the beamline, and sometimes work
must be done to adapt the beamline’s equipment to the particular needs of the experimenter. The user’s
beamtime might then run for several days of around-the-clock operations, which might be handled by
having the team work in shifts or by having long acquisition runs go overnight.
During the experiment, researchers are eager to begin evaluating their data in order to guide the progress
of the experiment. Here the experience varies greatly: in some cases one can obtain a preliminary anal-
ysis immediately (such as an electron density map in crystallography, an autocorrelation plot in photon

14Nashed et al., Optics Express 22, 32082 (2014).
15Wang et al., J. Sync. Rad. 21, 568 (2014).
16Mak et al., Faraday Discussions 171, 357 (2014).
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Figure 2.7: X-ray crystal structure depositions in the Protein Data Bank (www.rcsb.org) by year. Starting around
the mid 1980s, the vast majority of the structures have involved data taken at synchrotron light sources. The APS
has been used for more than 20% of these, which is the most of any synchrotron light source.

correlation spectroscopy, a comparison with a reference spectrum, or a volume rendering in tomogra-
phy), while in other cases the data require considerable theoretical modeling for their interpretation (this
is especially true in inelastic x-ray scattering studies). A more representative case is where one has an
immediate view of the data for rough interpretation, while a truly quantitative analysis requires additional
information and computation which is typically done after the beamtime has been completed.
At the conclusion of the scheduled experimental time, the research team often quickly copies data onto
portable hard drives and perhaps also makes photocopies of key pages of the experimental logbook for
sharing with beamline staff. They then return home with data in hand, and with some analysis tools that
they have developed, have been provided by a beamline scientist, or that are available for download
or purchase. Time is then spent going over the data, carrying out more complete analysis, and then
preparing results for publication (usually with considerable involvement of the APS beamline scientist,
especially for the large fraction of APS users who are experts in their own scientific domain but not in
x-ray science, such as biologists).
This describes the reality for many experiments today, and as can be seen it involves relatively little
in terms of network infrastructure. In Sections 2.5 to 2.8 below, we describe counter-examples to the
above in which data networks play a significant role, both today and in the hoped-for future.

2.5 Near-term Remote Science Drivers

2.5.1 Instruments and Facilities

The best example of remote use of the APS today is in macromolecular crystallography. This field has
been completely transformed in recent decades (Fig. 2.7) by improvements in crystallization methods,
cryogenic crystal loading robots and data collection systems at synchrotron light sources, photon count-
ing detectors, and analysis software. As a result, a significant fraction of the structures obtained are from
groups in molecular and cell biology who are not specialists in crystallography. The APS hosts several
regional, national, and industrial beamlines for macromolecular crystallography, and a new Advanced
Protein Characterization Facility (APCF) has been built next to these beamlines at the APS (Figures 2.1
and 2.2).
To see one example of remote access crystallography, consider the General Medical Sciences and

38

www.rcsb.org


Cancer Institutes Structural Biology Facility17 (GM/CA) CAT beamline at the APS. Researchers new
to crystallography often come in person for their first beamtime to understand the data-taking process,
but then they often use remote access for follow-on experiments. Crystallographers have settled on
just a few designs for sample mounting, and these standard mounting “pins” can be sent overnight in
a cryogenic dry shipper to the APS. Pins are then loaded into a “puck,” or multi-pin mounting cartridge,
which is in turn placed in a liquid nitrogen dewar at the crystallography beamline. Data collection is then
controlled by a program called JBluIce (see below).
The beamline hosts the usual set of beamline motors driven by EPICS, and a large-area detector.
The newest detector installed at one of the GM/CA beamlines is the Pilatus3-X 6M, a detector with
2463×2527 photon-counting pixels with a data depth up to 20 bits, and a maximum frame rate of 100
Hz. This detector is connected directly to a control computer that streams data files to a Pilatus Process-
ing Unit which consists of a custom-configured Linux computer with 32 Xeon cores, 768 GB of RAM, and
10 TB of RAID 50 disk. Supporting all of this is a computer network consisting of 10 Linux workstations,
several of which have a high speed (80 MBps) connection to a 56 TB disk array running Global File
System (GFS).
The most crucial networking requirement for remote access is the ability to use a remote desktop pro-
gram like NxPlayer with sufficient throughput. Packet round-trip times of 20 msec, and overall transfer
rates of 50 Mbps are sufficient for a successful experience for remote data access. It should be noted
that this remote access mode has been used with great success even with very challenging small-crystal
studies, such as that which led to the group of Brian Kobilka of Stanford University receiving the Nobel
Prize in 2012!

2.5.2 Software Infrastructure

The GM/CA-developed program JBluIce handles all of the data acquisition. Crystallographic analysis is
done by using any one of a number of programs in the “standard suite” developed within the crystallo-
graphic community.18 In addition, automated data processing is initiated after a few frames have been
collected, and two threads run in parallel: one is from scripts developed at the Diamond Light Source,
and the other is GMCAproc, which was recently developed at GM/CA. The parallel processing increases
the probability of determining a solution to the electron density.

2.5.3 Process of Science

Macromolecular crystallography begins with a research group in their home lab learning how to express
a protein of interest (for example, using genetically-modified yeast), purify it, and crystallize it (similar
process cycles exist for studies of other macromolecules such as viruses). This can take some time,
and crystals are often screened with a laboratory x-ray source in the home lab to guide the optimization
of crystallization conditions. Once crystals have been produced, they are mounted on standard pins and
shipped to the APS for mounting in a crystal puck.
Data collection is controlled by a program called JBluIce (a locally customized, Java-based evolution of
the BluIce software package developed earlier at Stanford Synchrotron Research Laboratory). The user
selects a crystal pin from the puck, then an automated sample mounting robot grabs the pin and places it
in the beam path. The crystal can be aligned to the beam using an on-axis visible light microscope with a
viewing screen within JBluIce, and a series of regions on the crystal can be selected for data collection.
The crystal is then scanned and rotated for the data collection series, before being returned by the robot
to the puck. As described above, data processing is initiated automatically, but users can manually
process data on a workstation at the beamline for online analysis during the day of the experiment, or a
separate workstation for just one day after. Data can be shipped to the user via portable hard drive, or
transferred over the network using Globus.

17www.gmca.anl.gov.
18A listing of those programs available on the GM/CA workstations is provided at www.gmca.anl.gov/computing/software_
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Users will often carry out further analysis of their crystallographic data in their home lab, especially if
they have complications in their diffraction patterns such as crystal “twinning.” The amino acid sequence
of the protein is then fit to the electron density map obtained from the crystallographic data. The crystal-
lographic community has long ago made it a requirement for journal publication that the structural data
be submitted to the Protein Data Bank, with the option to delay release until one year after the paper
describing the research has appeared.

2.6 Medium-term Local Science Drivers

2.6.1 Instruments and Facilities

As noted above, the APS is a very diverse facility with a large number of experimental techniques rep-
resented. Therefore consider two examples of studies where local presence is especially necessary
because of the nature of the sample handling: dynamic tomography of materials failing under strain,
and cryogenic x-ray ptychographic imaging of frozen hydrated biological cells. The instruments and
facilities involved in these respective techniques are as follows:

• Dynamic tomography: by using broad-spectrum illumination at bending magnet beamline 2-BM,
one can obtain sufficient photon flux to record an entire 1500-projection tomographic data se-
quence in under one second. This provides a unique opportunity to obtain 3D information on how
lightweight structural materials (such as might be used in aircraft) fail under strain, and what ma-
terial factors play a role. Because of the need to configure the strain-inducing mechanism, these
are “local” or on-site experiments where the scientific team must travel to the APS to carry out their
experiments. These experiments involve using a scintillator and lens system to deliver the x-ray
projection image onto a visible light camera, and future enhancements might include the purchase
of a camera such as the pco.dimax HS4 camera which can record 2000x2000 pixel images (12
bit depth) at a rate up to 2277 frames per second, with onboard storage for about 13,000 frames.
Data can then be transferred from the camera to the beamline computer using a GigE interface (1
Gbps), where the data is stored prior to reconstruction and analysis as described below.

• Cryo ptychography: x-ray ptychography is a coherent diffraction imaging method where x-ray
diffraction patterns are recorded as a coherent beam spot is moved to overlapping positions on
a specimen. By phasing the diffraction patterns as assisted by their overlaps, one can obtain an
amplitude and phase contrast image of a specimen beyond the resolution limit of the lens or beam-
limiting aperture. This is especially useful in hard x-ray microscopy of biological specimens, where
phase contrast dominates and where a spatial resolution in the 10–20 nm range is required to
identify many organelles within cells.19 Because of the need to work with cryogenically prepared
samples so as to minimize radiation damage (using, for example, the Bionanoprobe instrument at
21-ID), cryo ptychography experiments will likely remain “local” experiments employing an NIH-
supported cryo sample preparation laboratory established at the APS. Especially as one couples
cryo pychography with x-ray fluorescence microscopy, datasets will evolve towards 1000x1000
recordings of diffraction patterns of size 512x512 pixels, each with a dynamic range of 16 bits or
more, leading to a dataset size of about 0.5 TB for a single recording. Given that ptychographic
tomography has already been demonstrated on room temperature specimens at the Swiss Light
Source, we expect to move cryo pychography into 3D where one might acquire as many as several
thousands of projection angles, leading to a data volume per sample approaching 1 PB (because
of radiation dose limitations, these recordings will likely be very sparse so the data is likely to
be highly compressible). Future experiments might hope to make use of detectors such as the
EigerX-1M, which is capable of recording 1030x1065 pixel frames at 12 bit depth and at a rate of
up to 3000 frames per second. This camera is ideally coupled with a Dectris Pilatus Processing
Unit computer. Reconstruction of such large datasets requires the use of GPU-equipped cluster
computers, as will be described below.

19J. Deng et al., Proceedings of the National Academy of Sciences (in press).
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2.6.2 Software Infrastructure

Dynamic tomography: the first stage of data processing for dynamic tomography involves the recon-
struction of 3D volumes from a set of projection images. This is done using the program TomoPy.20

While the first version has been developed for use on single workstations, Doga Gursoy and Tekin Bicer
have recently begun testing a cluster-parallelized version of TomoPy in which each slice along the length
of the rotation axis is independently reconstructed on a single node. They have already demonstrated
a 700-fold speedup in tomographic data processing by this approach.
Cryo ptychography: to obtain a reconstructed image from a ptychographic dataset, one must simulta-
neously “phase” all the diffraction patterns. An earlier version of software used to solve this problem ran
for several weeks on a single workstation, which is clearly impractical for experiments where one would
like to judge the quality of the specimen to see if the sample preparation conditions were good or if the
right region was imaged. As was noted above, ASCR and BES have together supported the develop-
ment of a toolkit and operating program called PtychoLib,21 which has already achieved a 200× speedup
in ptychographic image reconstructions by employing Graphical Processing Units (GPUs). This program
is now being extended to work on a GPU-equipped cluster computer and additional 100× speed gains
have already been obtained in simulations. With the advent of continuous scan schemes for higher
throughput psychographic data collection,22 the needs for rapid reconstruction only increase.

2.6.3 Process of Science

While the sample preparation requirements will likely make dynamic tomography and cryo ptychography
experiments that continue to be done by scientists visiting the APS, the analysis of the data involves
more than just initial volume or image reconstructions as described above. In the case of tomography,
one might want to go from a series of reconstructed volumes to an analysis of just where the material
failed and how that corresponds to inclusions, voids, or grain interfaces within the material (see for ex-
ample Williams et al, Acta Materialia 58, 6194 (2010)). There is no “standard” software now available for
analyses of this sort, and the data volumes involved (a time series of around 10 GB volume reconstruc-
tions) are also challenging. In ptychography, the raw data volume is even larger and the computational
work required to obtain an image is greater. Given that the scientific users of these capabilities might
have consider expertise in materials synthesis (dynamic tomography) or cell biology (cryo ptychogra-
phy), high performance computing might be too far beyond their skill set or the computer hardware
capabilities they have immediately available.
One solution to these challenges is to develop a process where users of these techniques rely more
on computational facilities at Argonne for the analysis of their data. A very interesting trend is the de-
velopment of virtualized platforms in cloud computing, where one can have a specific analysis program
be installed and preconfigured on a virtual host for on-demand access. Even the visualization of large
volume data can be challenging, so one can imagine this process including tools such as ParaView
where the data resides on higher-end compute facilities at Argonne and the user only requires a net-
work connection with sufficient speed to drive their local display of 2D renderings from the 3D data as
the sample is rotated, the data is zoomed into, and so on. This might require views of up to 2000×2000
pixels to be interactively transferred at rates of 60 frames per second, or a data streaming rate (in 24 bit
color mode) of about 5 Gbps. Clearly this is well beyond standard network requirements, so ESnet has
much to offer.

20Program developed with Argonne LDRD support, and Gursoy et al., J. Sync. Rad. 21 (2014).
21Nashed et al., Optics Express 22, 32082 (2014)
22J. Deng et al., Optics Express (in press).
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2.7 Medium-term Remote Science Drivers

2.7.1 Instruments and Facilities

Again we consider one example out of the many diverse research capabilities available at the APS.
X-ray fluorescence microscopy provides a thousand-fold improvement in trace element detection rela-
tive to electron microscopes equipped with X-ray analysis systems, and this information is crucial for
research topics such as understanding the role of trace elements in several diseases as well as the
subcellular targeting of potential cancer drugs. While frozen hydrated samples imaged at cryogenic
temperatures provide the best structure and chemical preservation and limited studies on them might
be included as a cross-check, one can carry out much more rapid screening studies on populations of
cells using freeze-dried samples in room temperature X-ray fluorescence microscopes such as those at
beamlines 2-ID-D and 2-ID-E at the APS. At present these studies are carried out by users arriving in
person for their beamtime, but one could imagine following the examples of crystallography and powder
diffraction and going towards remote access for mail-in sample studies. One key instrument needed for
X-ray fluorescence microscopy is a high quality visible light microscope with digital image capture and
motorized sample stage for pre-identification of sample areas for x-ray imaging. Another is of course
a scanning X-ray nanoprobe instrument, where X-rays are focused to a small spot and characteristic
X-rays are recorded using an energy-dispersive detector as the specimen is scanned and (in the case
of fluorescence tomography) rotated. With the recent introduction of continuous-motion or “fly” scans
as opposed to move-stop-measure or “step” scans, X-ray fluorescence microscopy has moved to the
acquisition of megapixel datasets with each pixel containing a full X-ray spectrum recording over about
1000 energy points. When combined with emerging capabilities in fluorescence tomography, one can
imagine arriving at datasets with volumes approaching 1 TB before compression.

2.7.2 Software Infrastructure

At present users travel to the APS to carry out X-ray fluorescence microscopy experiments. They obtain
an immediate online view of approximate elemental content using simple energy “windows” set around
fluorescence lines. However, proper quantitation requires fitting of the full fluorescence spectrum, and
this is done using the program MAPS (Vogt, J. Physique IV 104, 635 (2003)) which is typically run as
a background job with results available some hours after acquisition. For fluorescence tomography, the
practice up until now has been to take the individual elemental concentration projections from MAPS
and read them into NIH ImageJ for tomographic reconstruction, which is a very tedious manual process
with poor algorithmic suitability for fluorescence tomography.

2.7.3 Process of Science

We describe here an improved workflow that would be required for the remote operation of fluorescence
microscopy and tomography with freeze-dried speciments viewed at room temperature.
The first step is to record a large-area visible light micrograph of the specimen so as to identify the
promising areas for imaging. There is an effort by the Software Services Group at the APS to develop
such a mosaic imaging capability using a Leica microscope with digital camera, and to register this
view on top of a large-area X-ray fluorescence map. Ultimately one would like to provide this capability
for a variety of light microscopes in home labs, so that users could mail-in samples plus set their own
pre-annotated light microscope mosaics to define scan regions.
The second step is to speed up MAPS processing so that quantitative results are available online. At
present this is done by per-pixel fitting using a program written in IDL (Exelisvis Inc.), but a conversion
to a Python-based matrix analysis code should speed this analysis up considerably.
The third step for fluorescence tomography is to take the MAPS output and feed it into TomoPy for
volume reconstruction. A project to develop this workflow is already underway.
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Finally, one should build upon early demonstrations of cell identification and elemental histogramming
capabilies (Wang et al., J. Sync. Rad. 21, 568 (2014)) to develop a workflow-usable set of analysis tools
to extract the desired information from a more complex dataset.
With tools such as the above in place, one could develop X-ray fluorescence microscopy into a more
automated workflow with more efficient use of APS beamline scientists and more efficient utilization of
X-ray fluorescence microscope beamtime. This could allow users to work from their home institutions
rather than travel to the APS for routine data collection. It would require similar developments in local
data storage and analysis program availability as described in Section 2.7.

2.8 Beyond 5 years

In response to a national need described in an August 2013 report of the Basic Energy Sciences Advisory
Committee (BESAC), the APS is developing plans for a major upgrade that would boost the brightness
of delivered X-ray beams by a factor of 100 while providing additional signal gains due to improvements
in optics and detectors. This upgrade, which could be completed as soon as about 2021, will increase
the data and computation needs of experiments including x-ray nanoprobes (including X-ray fluores-
cence microscopy), X-ray ptychographic imaging, and x-ray photon correlation spectroscopy. When
coupled with the growing capability (pixel count, frame rate) of commercial detectors used in other ex-
periments, one can easily imagine that the aggregate volume of data collected by the APS will increase
by a hundred-fold, reaching the level of many petabytes of data per month or even per week.

2.9 Network and data architecture

As the above use cases note, the APS has significant needs for high speed data networks. Some users
will always wish to transfer data back to their home institution for storage and analysis. In other cases
users may find it preferable to use cloud computing resources (whether from commercial services where
competition is driving the cost down to very inexpensive levels; or using resources located at Argonne
or other national laboratories, such as might be provided in a Federal Big Data initiative) for both data
storage and computation. All users who have successful beamtime proposals at the APS have great
expertise in their scientific domain, but many are not computationally savvy and for those users the best
way to deal with their data may be to use Argonne computational resources with pre-installed analysis
programs. These programs can then display results on the users’ laptop or desktop computer.

2.10 Data, Workflow, Middleware Tools and Services

The unique characteristics of X-rays include penetration into thick materials, and minimal plural scat-
tering compared to the use of electrons or visible light photons. This makes x-rays ideal for studying
thick, complex, heterogeneous materials, and the complexity of such materials plus the many capabili-
ties available at modern synchrotron light sources, combined to yield incredibly rich and large datasets.
This places high demands on data storage and computation resources, and the networks needed to
support the movement of data between these resources.
Because of the wide span of X-ray science techniques, it would be challenging to come up with “One Big
Analysis Program” that could support the examination of all data at the APS. An alternative goal can be to
find unified mechanisms for data management and file format schema, and basic toolkits for reading and
writing data files, plus scalable subroutines for key mathematical operations, such as discrete Fourier
transforms and matrix algebra operations.
While considering the advantages of storing data and providing computational resources at Argonne,
one must also consider the cost competitiveness of the commercial marketplace. Competition between
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several large vendors with the economies of scale are driving costs for data storage and computation
down to very low levels. In an era of stiff competition for scarce research resources, this is a compelling
argument in favor of the use of commercial services. Of course one popular scientific service (Globus)
already uses commercial cloud services to provide on-demand compute resources for coordinating data
transfers.
Finally, it is easy to fall into the pattern of thinking of data transfer and computation as involving only
computer and network hardware. In many areas of X-ray science, what is even more valuable is the
research and implementation expertise of applied mathematicians and computer scientists at places like
Argonne’s Mathematics and Computer Science (MCS) Division. As we have described above, there are
recent and growing connections between the APS and MCS, and these connections have led to new
algorithms and new analysis codes which have provided hundred-fold speedups in data analysis with
no new computer or network hardware involved.

2.11 Outstanding Issues

While GridFTP and Globus simplify data distribution and sharing, and have improved achieved perfor-
mance relative to prior approaches, high-speed network performance continues to be a problem in many
settings due to various “last mile” problems. More effort needs to be devoted to diagnosing and optimiz-
ing end-to-end performance. Simply put, an ESnet that delivers 100 Gbps to Argonne is of little use to
APS if it is not connected to APS and other resources at high speeds.
Growing data volumes and increasingly sophisticated data reconstruction and analysis methods imply
increasing demand for computing resources. Widespread use of new methods such as quasi-real-time
data evaluation and feedback, automated feature detection, and integration simulation and experiment
will require on-demand access to computing on a scale not currently supported at Argonne. While not
specifically a networking problem, this need has implications for networks in two respects: first, if on-
demand computing is not provided at Argonne, researchers will inevitably want to move data over the
network to remote locations for analysis, increasing network requirements. Second, regardless of where
computing is performed, increasing ability to perform on-demand computing will increase demands for
high-speed networking, especially when coupled with new beamline detectors.
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Table 2.1: The following table summarizes data needs and networking demands for a few key instrument types of
the APS.

·	  	  Macromolecular	  
crystallography.
·	  	  	  Instruments:	  
Pilatus3-‐X-‐6M	  
represents	  high-‐
end	  detectors	  
today.
·	  	  	  Software:	  suite	  of	  
community	  
developed	  tools.
·	  	  	  X-‐ray	  Photon	  
Correlation	  
Spectroscopy.

·	  	  	  3-‐40	  GB	  
per	  sample,	  
tens	  of	  
samples	  per	  
day.	  

·	  	  	  Instruments:	  
LBL/ANL	  
FastCCD2	  at	  1	  kHz	  
frame	  rate,	  Eiger	  
1M	  detector	  at	  3	  
kHz	  frame	  rate.

·	  	  	  Going	  
towards	  30	  
TB/month.

·	  	  	  Computational	  
facilities:	  120	  cores	  
with	  320	  GB	  RAM	  
dedicated	  to	  
Hadoop-‐based	  
analysis.

2-‐5	  years

5+	  years

Near	  Term	  (0-‐2	  years)
·	  	  	  Crystal	  growth	  in	  
the	  home	  lab,	  ship	  
crystals	  to	  APA,	  
remote	  beamline	  
operation,	  
automated	  first-‐
pass	  data	  analysis.

·	  	  	  For	  remote	  
beamline	  
operation:	  
50	  Mbps,	  
<20	  msec	  
round	  trip	  
packet	  time.

·	  	  	  Non-‐static	  
sample	  prepared,	  
acquire	  1000-‐
20,000	  frames	  at	  
~kHz	  frame	  rate.

·	  	  	  40	  GB	  in	  
<1	  minute	  
for	  near-‐real-‐
time	  
analysis.

·	  	  	  Typically	  5	  
TB	  data	  
transfers	  per	  
user	  group,	  
every	  few	  
days.

Key	  Science	  Drivers Anticipated	  Network	  
Needs

Science	  
Instruments,	  
Software,	  and	  
Facilities

Process	  of	  
Science

Data	  Set	  
Size

LAN	  
Transfer	  
Time	  
needed

WAN	  
Transfer	  
Time	  
needed
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Case Study 3

Center for Nanophase Materials
Sciences

3.1 Background

The Center for Nanophase Materials Sciences (CNMS) is one of five Nanoscale Science Research Cen-
ters (NSRCs) that was established as part of the Department of Energy’s (DOE) Office of Science contri-
bution to the U.S. Government National Nanotechnology Initiative (NNI). The CNMS provides a diverse
user community with access to state-of-the-art nanoscience research capabilities, expertise, and equip-
ment, and applies these resources to execute a cutting-edge science program with emphasis in theory
and simulation, nanofab¬rication, macromolecular synthesis and characterization, and understanding
of structure, dynamics and functionality in nanostructured materials using scanning probe microscopy,
electron microcopies, neutron scattering, optical spectroscopy, helium ion microscopy, and atom probe
tomography.
Motivating the research at the CNMS is the realization that the broadest range of energy applications
relies on materials that are enhanced or even enabled by nanoscale phenomena. As described be-
low, this applies in particular to batteries, supercapacitors, photovoltaics, catalysts, thermoelectrics,
and many additional functional or even structural materials. Therefore, the central motivation for the
work at the CNMS can be summarized as our desire to harness energy through nanoscience. To this
end, the mission of the CNMS is twofold: to enable the external scientific community to carry out high-
impact nanoscience research through an open, peer-reviewed user program, and to conduct in-house
research to understand and control the complexity of electronic, ionic and molecular behavior at the
nanoscale to enable the design of new functional nanomaterials. These two aspects of the CNMS’s mis-
sion are closely linked and mutually benefit from each other. In particular, the partnering of key groups
of users who bring outside expertise with the sustained scientific in-house effort allows the center to
be a leading effort in the development of new tools and methods for nanoscience, including synthesis,
theory/modeling, and characterization.
All researchers at the CNMS work with users and perform their own in-house research within the frame-
work of the DOE-reviewed research project. The CNMS conducts in-house research to understand and
control the complexity of electronic, ionic and molecular behavior at the nanoscale to enable the design
of new functional nanomaterials, with the overall goal of harnessing energy through nanoscience. The
scope of the in-house research (also referred to as staff science or theme science) is summarized by
three research themes:

• The Electronic and Ionic Functionality on the Nanoscale (EIFN) theme seeks to understand the
link connecting the atomic scale physics of electronic and ionic transport with chemistry and elec-
trochemistry. In this theme, electronic and ionic material functionalities are examined on the atomic
scale using advanced modalities of scanning probe microscopies and in-situ/operando scanning
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transmission electron microscopy. The knowledge acquired is extended to the emergent behaviors
at the scales of individual nanoparticles and defects and finally to the macroscale, where function
can be translated into new technologies. A central thrust is to characterize and control fundamental
mechanisms of coupling between electronic and ionic functionalities that underpin electrocatalysis
and energy storage and conversion.

• The Functional Polymer and Hybrid Architectures (FPHA) theme focuses on understanding,
designing, and manipulating the multiscale self-assembly of macromolecular and hybrid materials
to tailor electronic transport and response. Understanding the chemical and physical mechanisms
of the self-assembly of macromolecular and hybrid materials is essential for designing new mate-
rials with specifically designed functionalities for applications where materials with vastly improved
functionalities are required to address needs for future energy technologies, such as improved pho-
tovoltaics, battery separators, etc. FPHA research includes the study of the role of non-covalent
interactions in the self-assembly of energy-responsive macromolecular systems; investigation of
the role of interfacial interactions between organic components and substrates in directing self-
assembly and subsequent impact on optoelectronic properties; and finally the use of predictive
theory and simulation to decipher how the chemical and physical information thus encoded at the
nanoscale in our targeted polymer and hybrid architectures translates into structure, dynamics and
function at meso- and macro-scales.

• The Collective Phenomena in Nanophases (CPN) theme seeks to understand and control the
collective behaviors of electrons, ions and molecules at the nanoscale to enable the design of
new functional materials. In the environments of future energy systems—from dimensionally
confined semiconductor materials for photovoltaics to nanoporous supercapacitor and battery
electrodes—this requires understanding the behaviors that emerge when confinement and crowd-
ing have forced correlations between the electrons, ions, and molecules that store, transport, and
release energy. This work is carried out in two specific aims: (1) understanding how atomic scale
structure, nanoscale confinement, and quantum mechanical effects impact electronic processes
within nanostructures and across interfaces; and (2) understanding how correlations induced or
enhanced by confinement and crowding lead to collective behaviors in chemical transport and re-
activity. The first specific aim focuses on the need to develop a fundamental understanding of how
the properties of 2D materials and interfaces are influenced by confinement, shape, defects, and
composition by using theoretical modeling and simulations in concert with experimental synthe-
sis and characterization. This aim is differentiated from the FPHA theme by its emphasis on the
building up layers of materials to investigate how materials properties are modified by out-of-plane
interactions during the transition from a single 2D layer toward a 3D bulk, one layer at a time.
Additionally, considerable focus is on layered materials that intrinsically have strong electronic
correlation, such as high-temperature (high-Tc) superconductors.

3.2 Collaborators

The CNMS benefits from an intrinsically strong interaction with Oak Ridge National Laboratory (ORNL)
signature strengths in multiple areas and takes advantage of the distinctive capabilities of other DOE
user facilities at ORNL, including the Oak Ridge Leadership Computing Facility (OLCF), the Spallation
Neutron Source (SNS), and the High Flux Isotope Reactor (HFIR). In particular, the CNMS emphasizes
a strong link to neutron sciences, providing an environment for researchers to integrate neutron studies
into nanoscience efforts. The CNMS uses its expertise in materials sciences (including polymer syn-
thesis) and computational sciences towards the incorporation and development of materials-by-design
approaches, and seeks new advances in imaging sciences that build on ORNL’s demonstrated lead-
ership in scanning probes, scanning transmission electron microscopy, Helium ion microscopy, and
atom-probe tomography.
Each year the CNMS supports approximately 600 unique users from more than 100 different institutions
spanning academia to industry, and from around the world (see Figure 3.1) The CNMS user community
is diverse, ranging from students who work closely with CNMS staff, learning unique skills from experts

47



Figure 3.1: Origins of the various user projects are noted with red markers. CNMS supports approximately 600
different users from over 100 different institutions, globally.

and gaining access to cutting-edge instrumentation as they advance their research, to “partner users”
who collaborate with staff to develop new capabilities and instruments that are then made available to
the broad CNMS user community. About 10% of all users are theory users, who work with the staff of the
CNMS Nanomaterials Theory Institute to gain access to expertise and computational resources. About
40% perform synthesis and/or nanofabrication and typically use a broad range of characterization tools
to verify the quality of the synthesized materials or to investigate their novel properties. The remaining
50% of the users come to the CNMS specifically for characterization, using the broad range of tools
including microscopy (electron, He-ion, scanning probe), atom-probe tomography, X-ray diffraction, op-
tical spectroscopies, etc.

3.3 Near-term Local Science Drivers

3.3.1 Instruments and Facilities

The CNMS incorporates a substantial theory, modeling and simulation (TMS) effort in the form of the
Nanomaterials Theory Institute (NTI) that is cross matrixed with the Computer Science and Mathemat-
ics Division. The NTI works primarily on atomistic simulations at the level of electronic structure and
molecular dynamics, with some developments towards coarse-grained modeling for larger molecular-
based systems. The calculations support and challenge experimental work in polymer synthesis, metal
oxide semiconductor physics, superconductivity, carbon nano-architectures, electrochemistry, cataly-
sis, photovoltaic, optoelectronic, and electronic device fabrication. This also includes modeling for the
interpretation of neutron scattering experiments and hence provides a cross synergy with the needs of
the SNS in this domain. The NTI also supports significant numbers of nanoscience user projects that
require computational support.
Some of these calculations are utilizing tightly coupled codes (i.e., which do not scale well onto very large
parallel formats) and ideally need to be carried out repeatedly over a wide range of parameter space
(atomic or molecular constituency and arrangement, temperature, pressure, etc). Hence a key need is
large throughput on medium-sized compute clusters for which the CNMS maintains. The independent
data output from these calculations is usually not large but due to the need to run many simulations, it
can become quite substantial (10-100 TB). Overall, it is what is learned from the highly condensed output
(e.g., an electronic energy or a rate constant) that informs experiment that is the critical outcome.
Computer Facilities: ORNL operates the Oak Ridge Leadership Computing Facility (OLCF) which man-
ages the computing program at ORNL for the Department of Energy. OLCF has a professional, experi-
enced operational and engineering staff comprised of groups in HPC operations, technology integration,
user services, scientific computing, and application performance tools. The OLCF staff provides contin-
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uous operation of the center and immediate problem resolution. On evenings and weekends, operators
provide first-line problem resolution for users with additional user support and system administrators
on-call for more difficult problems. Primary systems include the following:

• Titan is a hybrid-architecture Cray XK7 system with a theoretical peak performance exceeding
27,000 trillion calculations per second (27 petaflops). It contains both advanced 16-core AMD
Opteron central processing units (CPUs) and unconventional NIVIDIA Kepler graphics process-
ing units (GPUs). Titan features 18,688 compute nodes, a total system memory of 710 TB, and
Cray’s high-performance Gemini network. Its 299,008 CPU cores guide simulations while the ac-
companying GPUs that can handle hundreds of calculations simultaneously. The system provides
decreased time to solution, increased complexity of models, and greater realism in simulations.

• Eos is a 744-node Cray XC30 cluster with a total of 47.6 TB of memory. The processor is the Intel®
Xeon® E5-2670. Eos uses Cray’s Aries interconnect in a network topology called Dragonfly. Aries
provides a higher bandwidth and lower latency interconnect than Gemini. Support for I/O on Eos is
provided by 16 I/O service nodes. The system has two external login nodes. The compute nodes
are organized in blades. Each blade contains four nodes connected to a single Aries interconnect.
Every node has 64 GB of DDR3 SDRAM and two sockets with eight physical cores each. Intel’s
Hyper-threading (HT) technology allows each physical core to work as two logical cores so each
node can functions as if it has 32 cores. Each of the two logical cores can store a program state,
but they share most of their execution resources. Each application should be tested to see how
HT impacts performance before HT is used. The best candidates for a performance boost with HT
are codes that are heavily memory-bound. The default setting on Eos is to execute without HT,
so users must invoke HT with the -j2 option to aprun. In total, the Eos compute partition contains
11,904 traditional processor cores (23,808 logical cores with Intel Hyper-Threading enabled), and
47.6 TB of memory.

• Rhea is a 196-node commodity-type Linux cluster. The primary purpose of Rhea is to provide a
conduit for large-scale scientific discovery via pre- and post-processing of simulation data gener-
ated on Titan. Users with accounts on INCITE- or ALCC-supported projects are automatically given
an account on Rhea. Director’s Discretion (DD) projects may request access to Rhea. Each of
Rhea’s nodes contain two 8-core 2.0 GHz Intel Xeon processors with Hyper-Threading and 64GB
of main memory. Rhea is connected to the OLCF’s 32PB high-performance Lustre filesystem
“Atlas.”

At ORNL there is also a substantial organization institutional cluster. The ORNL Institutional Cluster
(OIC) has come together in five phases. Specifically for the CNMS, the OIC consists of:

• A bladed architecture from Ciara Technologies called VXRACK. Each VXRACK contains two login
nodes, three storage nodes, and 80 compute nodes. Each compute node has dual Intel 3.4 GHz
Xeon EM64T processors, 4 GB of memory and dual gigabit Ethernet interconnects. Each VXRACK
and its associated login and storage nodes are called a block. There are a total of nine blocks of
this type.

• Phase 2 blocks were acquired and brought online in 2008. They are SGI Altix machines. There
are two types of blocks in this family:

– Thin Nodes (3 blocks): Each Altix contains one login node, one storage node and 28 compute
nodes within 14 chassis. Each node has eight cores. There are 16 GB of memory per node.
The login and storage nodes are XE240 boxes from SGI. The compute nodes are XE310
boxes from SGI.

– Fat Nodes (2 blocks): Each Altix contains one login node, one storage node and 20 compute
nodes within 20 separate chassis. Each node has eight cores and 16 GB of memory. These
XE240 nodes from SGI contain larger node-local scratch space and a much higher I/O to this
scratch space because the space is a volume from four disks.

• Phase 3 consists of 2x42 nodes each with two Quad Core 2.26 GHz Intel Xeon E5520 (Nahelem-
EP) processors with 24 GB 1066 MHz DDR3 memory per node and 500GB of local disk. These
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units are an Intel/Linux/PBS/MPI/Infiniband system with 336 processor cores total, 3GB mem-
ory/core, delivering nearly 3 million CPU hours per year.

• Phase 5 consists of 28 Compute Nodes: Each with two Interlagos Opterons 6274 with 16 cores
2.2GHz 16MB L3 Cache, 128GB RAM (DDR3 Registered, Dual Rank, 1333MHz, 1.5v), 1TB HDD.
This system has a total of 896 cores, 3.5 TB of memory (4 GB/core of RAM) and approximately
7.89 teraflops (on the compute nodes) theoretical.

Network Connectivity. Primary external connectivity for ORNL is provided by ESnet. ORNL has re-
dundant connections to ESnet, which maintains a hub at ORNL with primary connectivity via a 100G
circuit to the ESnet Atlanta hub. Secondary connectivity for the ESnet hub located at ORNL is provided
by ORNL on a site owned optical DWDM system and consists of dual 10G circuits to Nashville. ORNL
also has 10G connectivity to the Southern Crossroads (SoX) in Atlanta, with commodity peering to Hurri-
cane Electric. These connections into ORNL provide access to major research and education networks
around the world.
The ORNL campus network supports separate logical networks, each with varying levels of security
and performance. Each of these networks is protected from the outside world and from each other with
firewalls and/or access control lists and network intrusion detection. Connectivity is provided between
the networks and to the outside world via redundant paths and switching fabrics. A tiered security
structure is designed into the network to mitigate many attacks and to contain others.
High Performance and Archival Storage. To meet the needs of ORNL’s diverse computational plat-
forms a shared parallel file system capable of meeting the performance and scalability requirements of
these platforms has been successfully deployed. This shared file system based on Lustre, DDN and
InfiniBand technologies is known as Spider and provides centralized access to petascale datasets from
all major computational platforms. Delivering 1TB/sec of aggregate performance, scalability to over
26,000 file system clients, and storage capacity of over 32 PB, Spider is the world’s largest scale Lustre
file system. Spider consists of 48 DDN 9900 storage arrays managing 13,440 1TB SATA drives, 192 Dell
dual-socket quad-core I/O Servers providing over 14 teraflops in performance and over 3 TB of system
memory. Metadata is stored on two LSI Engino 7900s (XBB2) and is served by three Dell quad-socket
quad-core systems. ORNL systems are interconnected to Spider via and InfiniBand system area net-
work that consists of four 288-port Cisco 7024D IB switches and over 3 miles of optical cables. Archival
data is stored on the center’s High-Performance Storage System (HPSS) developed and operated by
ORNL. HPSS is capable of archiving hundreds of petabytes of data and can be accessed by all major
leadership computing platforms. Incoming data is written to disk and later migrated to tape for long-term
archival. This hierarchical infrastructure provides high-performance data transfers while leveraging cost
effective tape technologies. Robotic tape libraries provide tape storage. The center has three SL8500
tape libraries, holding up to 10,000 cartridges each and is in the process of deploying a fourth SL8500 this
year. The libraries house a total of twenty-four T10K-A tape drives (500 GB cartridges, uncompressed)
and thirty-two T-10K-B tape drives (1 TB cartridges, uncompressed). Each drive has a bandwidth of
120MB/sec. ORNL’s HPSS disk storage is provided by DDN storage arrays with nearly a petabyte of
capacity and over 12GB/sec of bandwidth.
Compute and Data Environment for Science (CADES). ORNL hosts a number of signature facilities
and projects that produce, analyze, and steward a wide diversity of data. These include the Spallation
Neutron Source (SNS), the Oak Ridge Leadership Computing Facility (OLCF), the Center for Nanophase
Materials (CNMS), the Consortium for Advanced Simulation of Light Water Reactors (CASL), the At-
mospheric Radiation Measurement (ARM) archive, the Carbon Dioxide Information Analysis Center
(CDIAC) and other growing initiatives such as our work with the Center for Medicare and Medicaid
Services (CMS). In addition to these facilities and projects, ORNL has a wide range of other research
projects that are increasingly reliant on computing and data-intensive capabilities. While each of these
centers and projects has a unique mission, they share common requirements and needs in computing,
data processing, and management. Perhaps even more broadly, these initiatives share common needs
in computing and data intensive capabilities that can be more efficient and cost effective if they lever-
age common technologies and expertise in computing and data science. These capabilities include
data analysis, data fusion, data mining, search and discovery, visualization and many others. CADES
provides a new local environment for scientific discovery enabling scientists to free themselves from
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Figure 3.2: Illustration of the data-intensive storage backplane implemented at the Compute and Data Environment
for Science (CADES) at ORNL.

the difficulties of trying to manage, manipulate and process large data sets in order to concentrate on
extracting the scientific meaning of the theoretical, experimental, and observational data.
Visualization and Collaboration. ORNL has state-of-the-art visualization facilities that can be used
on site or accessed remotely. ORNL’s Exploratory Visualization Environment for REsearch in Science
and Technology (EVEREST) consists of two tiled display walls: the primary display wall spans 30.5’ x
8.5’ and consists of eighteen 1920 × 1080 stereoscopic Barco projection displays arranged in a 6 x 3
configuration. The secondary display wall consists sixteen 1920×1080 planar displays arrange in a 4 x
4 configuration providing a standard 16:9 aspect ratio. Three computing systems are currently provided
in the laboratory. These consist of a distributed memory Linux cluster, a shared memory Linux node,
and a shared memory Windows node.
The EVEREST lab is a venue that serves both as a visualization center and a place for scientists to
meet, hold discussions, and present their work.

3.3.2 Software Infrastructure

A wide variety of software and algorithms are currently used in the various compute and data-intensive
projects. This software ranges from custom-built algorithms and libraries for specific needs; ORNL-
packaged software such as ADIOS, EDEN, ESGF, Mercury, Piranha and VisIt; community-developed
software such as Git, Hive, Hadoop, and Boost; to commercial software such as Matlab, IDL, and
Greenplum. These software packages address requirements such as analysis, data mining, seman-
tic analysis, natural language processing, fusion, indexing, visualization and visual analytics, discov-
ery/dissemination, federation, intelligent user interfaces, and software development lifecycle manage-
ment.
Via CADES, a data-intensive storage backplane (see Figure 3.2):

• Accessible via a variety of protocols such as: NFS, SMB/CIFS, Web, Globus Online, GridFTP,
BBCP, FTP, SCP, among others.

Computational materials and chemical science codes (bold indicates the codes involve NTI develop-
ment) include:

• DMRG++, DCA+, QMCPACK, SCFT, Quantum Espresso, Siesta, Abinit, VASP, NWChem, PSI4,
DFTB, LAMMPS, and GROMACS

51



3.3.3 Process of Science

Scientific understanding enabled through the careful design of experiments or computational simula-
tions for the collection and analysis of key data, is one of the primary products of user facilities. Data
movement and data processing are critical for scientists and researchers, particularly once they have
performed their experiments or simulations. For work at the CNMS, the process can be characterized
as listed below.

• Experimentally measuring and computationally simulating materials provide the major means for
collecting scientific data and is the primary activity of users; while at the CNMS, the measurement
techniques vary widely across the suite of instruments and theoretical/computational approaches,
but they have some common steps involving data acquisition and analysis as listed below:

– Data movement, cataloging, and archiving
– Data analysis and visualization
– Fitting to models and analysis of the processed data for structure, function or dynamics infor-

mation
Whereas computational resources are ephemeral, data is enduring, requiring long-lived allocations of
storage resources. Public policy is further motivating this demand, requiring open access to data gener-
ated as part of federally funded research. The current data management policy for the CNMS is stated
in Table 3.1.

3.4 Near-term Remote Science Drivers

3.4.1 Instruments and Facilities

CNMS has numerous remote users. These users are primarily cyber-based and connect to the internal
compute cluster or LCF using ssh combined with a SecureID and a PIN. Each user has an account
on one of the compute systems and accesses the compiled codes, data archives, and necessary math
libraries directly. Data from the calculations are typically analyzed and stored on the local compute
systems, often for the duration of the project, and then transferred to the users home. The size of the
data/results collected varies from projec to project and the compute system (hundreds of gigabytes to
hundreds of terabytes). Online data analysis and reduction are important after which GridFTP can be
effective for much of the needed data movement between computing resources.

3.4.2 Software Infrastructure

Online data analysis and reduction are important and much of this is accomplished within the particular
application software. Other components may involve post-processing via VisIt, VMD, VESTA, Matlab,
P4Vasp, etc. Typical data formats are ASCII, XML, HDF5, binary, lossless compressed, etc. GridFTP
can be effective for much of the needed data movement between computing resources, especially in
the post-processed form. Others modes such as NFS, SMB/CIFS, Globus, BBCP, FTP, SCP, can also
be useful and are utilized.

3.4.3 Process of Science

The size of the data/results produced varies from project to project and the compute system (hundreds
of gigabytes to hundreds of terabytes). Online data analysis and reduction are important after which
GridFTP can be effective for much of the needed data movement between computing resources. Others
modes such as NFS, SMB/CIFS, Globus, BBCP, FTP, SCP, can also be useful. Typical workflow:
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Table 3.1: The guidelines below describe CNMS Data Management procedures, processes and resources that
need to be understood by both user projects and in-house research.

CNMS Data Management Policy
1. Limited data management resources. The CNMS has lim-
ited data storage resources and storage capacity varies depend-
ing upon the instruments used. User data stored at CNMS will
only be retained up to three months past the termination date of
a user project. There is no lifetime retention. Users are expected
to migrate their data out of CNMS prior to the expiration date of
their project. Beyond the three-month grace period, the CNMS
reserves the right to delete all user _les and directories across all
applicable storage media.
2. Users must not rely upon data storage and retention at CNMS.
Users must not rely upon data storage and retention at the CNMS
to meet funding agency requirements for a Data Management
Plan.
3. The standard User Agreement, approved by DOE, defines
ownership of technical data.
4. Published data displayed in figures. Researchers are encour-
aged to make publicly available in tabular form any published data
displayed in figures. This requirement could be met by including
the data as supplementary information to the published article or
through other means. The published article should indicate how
these data can be accessed, or researchers could make this in-
formation available in their research webpages.
5. Release of computer source code. When appropriate, re-
searchers are encouraged to make publicly available the full re-
lease of all computer source code used to produce the published
results along with self-tests to build confidence in the quality of
the delivered code. [see, D. C. Ince, L. Hatton, and J. Graham-
Cumming, “The case for open computer programs,” Nature, 482,
485-488 (2012)].
6. Instructions explaining how to reproduce relevant data. Re-
searchers are encouraged to include step-by-step instructions
explaining how to reproduce all relevant data published. This
requirement could be met by including the instructions as sup-
plementary information to the published article or through other
means. The published article should indicate how these data can
be accessed, or researchers could make this information avail-
able in their research webpages.
7. These guidelines are subject to change without notice. The
latest version will be available at http://www.cnms.ornl.gov/user/
Data_Management_Policy.pdf.

53

http://www.cnms.ornl.gov/user/Data_Management_Policy.pdf
http://www.cnms.ornl.gov/user/Data_Management_Policy.pdf


• Collecting scientific data via experiments and computational simulations– the measurement and
computational simulation techniques vary widely across the suite of instruments and theoreti-
cal/computational approaches, but they have some common steps involving data as listed below:

– Data acquisition
– Data movement, cataloging, and archiving
– Data analysis and visualization
– Fitting to models and analysis of the processed data for structure, function or dynamics infor-

mation
Many scientific domains are increasingly dependent on the ability to efficiently capture, integrate, ana-
lyze, and steward large volumes of diverse data. In materials science, understanding and ultimately de-
signing advanced new materials with complex properties will require the ability to integrate and analyze
data from multiple instruments designed to probe complementary ranges of space, time, and energy.
Chemical imaging, another crucial contributor to the design of new materials, brings other challenges as
many of the imaging techniques are destructive. These techniques require near real time analysis to de-
termine structural evolution properties of the material while there is still significant material left to image.
These and many other scientific pursuits require data science resources that are often distinct from, but
complementary to, the computational science resources provided by traditional HPC facilities.
As an example, the Imaging and Nanoscale Characterization group at the CNMS is actively working
on the development of real-space, non-destructive scanning probe microscopy techniques for probing
bias-induced (ferroelectric polarization switching, electrochemical reactions) and thermal (glass transi-
tion, melting) transformations on the nanosocale. In these experiments, the scanning probe microscopy
(SPM) tip focuses an electric or thermal field in a small, 5–30 nm region of material, inducing local
transformations. In parallel, measured dynamic strain, resonance frequency shift, or quality factor of the
cantilever (piezoresponse force microscopy, electrochemical strain microscopy) or tip-surface current
(conductive AFM) provides information on processes in the material (polarization, domain size, ionic
motion, second phase formation, melting) induced by local stimulus. In the future, the detection strate-
gies can include microwave, Raman, focused X-ray, electron microscopy, and other high-bandwidth
local ( 10 nm and below) structural and chemical probes. The uniqueness of this approach is that trans-
formation can be probed in material volumes containing no or single individual extended defects, paving
a pathway for studying phase transformations and electrochemical reactions on a single defect level (as
opposed to volume averaging for typical materials science methods; compare to the impact of molecular
unfolding spectroscopy in biomolecular chemistry), the target of crucial importance for material science
to link defect structure to its functionality.
The hardware platforms for these studies can be realized on 30,000+ SPMs worldwide! This necessi-
tates a classical development path of minimizing by noise level, improving drift stability, and introducing
proper chemical and thermal environments. However, these studies require drastic improvement in ca-
pability to collect and analyze multidimensional data sets, well beyond state of the art (2D imaging or
3D spectroscopic imaging) in the field. This can be demonstrated as follows:

• The spatial scanning necessitates data acquisition over 2D dense grid of points
• The probing local transformation requires sweeping local stimulus (tip bias or temperature) while

measuring the response
• All first-order phase transitions are hysteretic and hence are history dependent. This necessi-

tates first-order reversal curve type studies, effectively increasing dimensionality of the data (e.g.,
probing Preisach densities)

• First-order phase transition often possess slow-time dynamics, necessitating probing kinetic hys-
teresis (and differentiating it from thermodynamics) by measuring response as a function of time

• The detection of force-based SPMs necessitates probing response in a frequency band around
resonance (since resonant frequency can be position dependent and single-frequency methods
fail to capture these changes).
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Table 3.2: Development of multidimensional SPM methods at CNMS.
*Dimensionality is given as (space x space) x frequency x (parameters). Note that the signal can be multimodal (e.g.
collect phase and amplitude of response or three vector component of the signal). Highest number of measured
variables to date is 8 (phase and amplitude in the on/off state for vertical and lateral signal). The collection of
multimodal data multiplies file size by N

2
.

**Not realized yet due data acquisition and processing limitations, but is the ultimate goal for data acquisition and
analysis developments.
***Current data acquisition times are limited by the eigen-frequency of the cantilever in the contact mode. However,
expected introduction of fast DAQ electronics and small cantilevers is expected to push these by about a factor of
10 in next 2–4 years.
****Applications for ferroelectric, electrochemical, and biological/macromolecular systems.

Technique Dimensionality Current data set* Target data set***
Band Excitation 3D, space and (256 x 256) x 64, (512 x 512) x 64,
(BE) ω 32 MB 128 MB
Switching spec- 3D, space (64 x 64) x 128, (128 x 128) x 256,
troscopy PFM and voltage 4 MB 32 MB
Time relaxation PFM 3D, space (64 x 64) x 128, (128 x 128) x 256,

and time 4 MB 32 MB
AC sweeps 4D, space, (64 x 64) x 64 x 256, (128 x 128) x 64 x 256,

voltage 512 MB 2 GB
BE SSPFM 4D, space, (64 x 64) x 64 x 128, (128 x 128) x 64 x 256,

ω, voltage 256 MB 2 GB
BE thermal 4D, space, (64 x 64) x 64 x 256, (128 x 128) x 64 x 256,

ω, Temp 512 MB 1 GB
Time relaxation 4D, space, (64 x 64) x 64 x 64, (128 x 128) x 64 x 512,
BE ω, time 4 MB 128 MB
First order re- 5D, space, (64 x 64) x 64 x 64 x 16, (128 x 128) x 64 x 64 x 64,
versal curves ω, voltage, voltage 2 GB 32 GB
(FORC)
Time relaxation 5D, space, (64 x 64) x 64 x 64 x 64, (128 x 128) x 64 x 64 x 256,
on sweep, BE ω, voltage, time 8 GB 64 GB
FORC Time 6D, space, ω, (64 x 64) x 64 x 64 x 16 X 64,
BE** voltage, voltage, time 128 GB

These simple physical arguments illustrate that complete probing of local transformations requires a 6D
(space x frequency x (stimulus x stimulus) x time) detection scheme, as compared to 1D molecular un-
folding spectroscopy. To date, we have realized 5D detection schemes (first order reversal curves, time
relaxation within hysteresis loop methods). The development of these techniques is illustrated in Fig-
ure 3.3. It is important to note that the acquisition of these compound data sets brings the obvious
challenge of data storage, dimensionality reduction, visualization, and interpretation.

3.4.4 Software Infrastructure

Local resources such as CADES (see Section 3.3.1) for enhanced data storage and near real-time data
analysis capabilities, especially for experimental techniques like the imaging case mentioned above
(Section 3.4.1). We need to bring data analysis and reduction to the experimental instruments to mini-
mize the time-to-results cycle. We need to have low latency, high-bandwidth dedicated data portals for
the user centers or “computational end-stations.”
Hardware and software will continue to advance, requiring the infrastructure to remain flexible such that
these technological advances can readily be adopted. The infrastructure must allow adoption of hard-
ware advances such as the transition from homogeneous CPU technologies to heterogeneous platforms
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that incorporate CPU cores optimized for single-thread performance along with cores optimized for multi-
threaded performance. Advances in high-performance networking technologies such as InfiniBand or
Data-Center Ethernet must be easily deployed within the infrastructure when compute and data inten-
sive initiatives will benefit from these advances. Adoption of these hardware advances will require a
flexible software management infrastructure allowing various levels of the software stack to be adapted
to these new hardware technologies. This flexibility must span operating systems, middleware, and
even applications. Similarly, the software management infrastructure must be flexible to new advances
in software technologies that may or may not be tied to specific hardware architectures.

3.4.5 Process of Science

Computational resources will continue to grow in size/speed, and as such the amount of data generated
and the demand to perform analysis and data transfer will also increase. A similar statement holds for
experimental approaches, including those that have not traditionally been thought as within the big data
area, e.g., imaging (see example in Section 3.4.1). Finally, we expect that it will become more common
to find simultaneous users at multiple facilities and thus the need to coordinate improved capabilities for
theory/simulation guided experiments, data movement, fusion, and efficient analysis.

3.5 Medium-term Remote Science Drivers

3.5.1 Instruments and Facilities

While virtually all projects (computational and experimental) require scalable compute and relatively
large on-line storage capacities for specific workloads, these workloads are typically transient in nature.
This transient property can be leveraged to provide elasticity in both compute and storage for these
workloads. Whereas in the past a compute and storage resource would have to be designed to accom-
modate the most demanding requirements of an initiative, elasticity may allow these data initiatives to
only use the “average” requirement of storage and compute.
Consider the workflow illustrated in Figure 3.3; data ingress from a large-scale simulation or experiment
followed by data analysis to find features of interest as illustrated by the red arrow in the figure. During
this workflow the variation in processing resources, both in terms of compute and storage, can be sub-
stantial. Ingress of data from a simulation or experiment can require significant high-performance “on-
line” storage capacity and substantial compute resources for subsequent data analysis. These resource
requirements are point-in-time and, once data analysis is complete, both the compute and “online” stor-
age resource are no longer needed as the data is moved to archival storage. Other examples of this
variation in processing requirements are commonly found in data mining in which data is staged from
archive into online storage and compute resources are then used to mine these datasets for correlations
and other features of interest. In both of these examples and in many others representing a broad set
of workflows in compute and data-intensive initiatives, an elastic infrastructure is a requirement.

3.5.2 Software Infrastructure

A number of technologies such as high-performance parallel file systems, scalable archival storage sys-
tems, parallel data analysis tools, metadata harvesting tools, and distributed data management tech-
nologies have been developed and deployed. While these technologies have addressed many existing
requirements, future requirements may require improved capabilities. As increases in computational
capabilities lead to increases in data volumes and velocity and the drive to couple simulation with exper-
imental results and observations, this will lead to increasing data diversity as well. There will be a need to
develop fundamentally new approaches to data capture, reduction, analysis, and management.
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Figure 3.3: Illustration of the typical scenarios for data workflow from large data generators (shown in the box). The
data workflow can range from simple data archiving (bottom orange arrow), to post data analysis (middle red arrow),
to data stream analysis (green arrow). More recently, the data workflow has evolved toward requiring real-time data
analysis and reduction to provide guided feedback (top blue arrows).

There will still be continued use of GridFTP, NFS, SMB/CIFS, BBCP for data movement. Traditional
simulation services such as simulation frameworks, scientific libraries, and scalable debuggers, will be
complemented by data and analytic services such as data mining and data fusion services, data transfer
tools, metadata harvesting and management tools, and data discovery and dissemination services. As
these services are often composed into complex workflows that incorporate one or more underlying
services, higher-level workflow composition and execution services are often employed, such as the
Adaptable I/O systems.
In addition to supporting a variety of workflows, the infrastructure must be flexible to support varying
security and data policy requirements. This infrastructure must support data that is open-science with
few if any restrictions governing access, and at the same time support data with far greater restrictions
such as proprietary information as part of an industrial partnership or information that may be classified
in nature. In some cases, differing security requirements may simply necessitate differing controls for
access and use of the data while sharing the same physical infrastructure. In other cases, elements
of the infrastructure may require isolation for compliance. Beyond diverse security and data-access
requirements, projects may have differing requirements in data-stewardship and data-retention policies.
As an example, most of the simulation platforms currently managed require users to move their datasets
off of high-performance file systems almost immediately (two weeks). Although on the compute cluster
at CNMS the data management policy is more dilated (see Table 3.1), future demand and capacity may
require moving toward the shorter times on storage. Currently on the OLCF, users can move datasets
from these file systems to longer-term archival storage, but even in archival; data retention is limited to
the life of the project, often just a few years. This is found in constrast with initiatives such as the ARM
and CDIAC archives where datasets are held indefinitely. In the future, the underlying infrastructure
will also need to have the flexibility to support the diversity of these and many other requirements in
security and data-policy. Over time, as common data workflows become more widespread, the software
infrastructure will need to allow readily deploying and supporting these common workflows.

3.5.3 Process of Science

The trend toward larger numbers of remote and many-facility users will continue. This will demand
improved integration and coordination, both in terms of workflows but also for data analysis, data man-
agement and data transfers. Simultaneous, multi-modal analysis will become more common, particularly
in terms of computational modeling/simulation and experimental study, and also in terms of coordinating
multiple modes of experimental interrogation such as X-rays, neutrons, and materials imaging.
While advances in experimental facilities and computational techniques continue, the deluge of data
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generated from these techniques represents both a big data challenge and a big data opportunity. For
example, instruments at the SNS can now generate millions of neutron events per second and rather than
simply collapsing these events statistically, new experiments require the ability to analyze each individual
event. Experiments at NSRCs, such as at the CNMS, use multiple real-space probing techniques to
observe building blocks at different time and length scales requiring advances in multi-modal data-driven
analysis techniques to analyze these high-dimensional datasets (these also include dynamic STEM and
TEM capable of generating many tens of terabytes; with 600 instruments worldwide, and increasing by
50 instruments/year). The trend is toward significantly increased resolution and flux that is capable of
generating multiple petabytes of data per week and this will require commensurate advances in data
management, movement, and analysis techniques. Computational materials design approaches will
continue to increase, employing high-throughput parameter space studies to identify candidate materials
prior to synthesis. Such studies can generate vast knowledge databases of candidate materials and
multiple petabytes of data, requiring advances in data management and parameter space exploration
techniques.

3.6 Beyond 5 Years

Over the next five or more years, the size of simulation and experimental data sets will continue to in-
crease. This will be a result from both the deployment of enhanced computational resources and from
improved scalable algorithms to utilize those resources, which will permit the simulation of consider-
ably larger nanostructured systems and phenomena on longer time scales. In addition, there will be a
commensurate-enhanced demand for remote access, visualization and control, and analysis of simula-
tion and experimental data that will require greater network abilities. At the same time we should expect
the large light source facilities to be heavily used and likewise demand a greater need for networking
and data storage. The photon and neutron sources now provide considerably higher intensities to in-
dividual beamlines and future plans will further enhance this capability. Coupled with corresponding
advances in detector technology, this will continue to result in unprecedented rates of data collection
in the experiments. The sheer volume and velocity of data from individual experiments/calculations will
also increase, as scientists are able to probe increasingly complex questions that probe more subtle
properties and phenomena. In the future, bringing all types of disparate data to bear on a particular
discovery process or mission outcome could be a new frontier of science and technology.
In the rapid incubation of data-intensive science, the scientific community is attempting to develop tech-
nical sophistication and mature code bases on an aggressive schedule. By comparison, this work hap-
pened over the course of 10–20 years in parallel computing, while there appears to be the expectation
for an accelerated similar process occurring in data-intensive computing over the course of only about
5 years.

3.7 Network and Data Architecture

The computational capabilities of the Leadership Computing Facilities (LCFs) will increase 1000-fold
over the next decade. The research, development and integration of the resources required to manage,
analyze and disseminate data generated at the LCFs will require a comprehensive data and network
strategy. This strategy must encompass research and development of new data technologies, industry
engagement to productize these technologies, and an organizational structure that is prepared to de-
velop, deploy, and manage these resources in the most cost effective manner. Many of the challenges
faced with respect to data are common across a number of other DOE facilities such as the neutron
and light sources, the Nanoscale Science Research Centers (CNMS, CNM, CINT, CFN, and Molecu-
lar Foundry), as well as many of the Energy Frontier Research Centers (EFRCs) and Innovate Energy
Hubs.
Data-intensive scientific studies will continue to become more prominent and will increasingly require
high performance computing and data infrastructure, sophisticated data analysis and visualization, and
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comprehensive data management.
Clearly high-performance data transfer and big data analysis will be important aspects for the next 5–
10 years. Also the work within the national Materials Genome Initative (MGI) will continue to develop
large-scale knowledge databases which will enable new capabilities to perform materials design.

3.8 Data, Workflow, Middleware Tools and Services

Some applications on the LCFs already routinely create tens of terabytes of data in a single application
run and it is not uncommon for a single application run to generate in excess of 100 TB. In addition to large
volumes of data, applications can create millions of granules (files) in a single application run—at several
hundreds of thousands threads of execution each generating a file per I/O epoch. In this environment,
many users are already confronted with extreme data-management challenges. On smaller compute
clusters, users also are generating tens of terabytes of data during a project and these data sizes will
continue to rapidly increase in the next 5–10 years.
To meet the challenges posed by increased capabilities to produce large amounts of data, a number of
technologies such as high-performance parallel file systems, scalable archival storage systems, parallel
data analysis tools, metadata harvesting tools, distributed data management and data transfer technolo-
gies have been developed and deployed. While these technologies address many existing requirements,
future requirements will require completely new capabilities. As continued increases in computational
capabilities lead to dramatic increases in data volumes and the drive to couple simulation with multi-
modal experimental results and observations leads to increasing data diversity—fundamentally new
approaches to data capture, reduction, analysis, and management will be required.
In addition to traditional HPC software packages such as Globus services, HDF5, NetCDF, Glean,
ADIOS, VisIt, and ParaView, centers will need to provide new software and services such as Mongo,
Hadoop, and AMQP services. Perhaps these services may be provided as a low-level provisioned in-
frastructure or a higher-level service designed to address fault-tolerance and scalability.
As we move towards Exascale systems in which total concurrency is anticipated increase by a factor of
4000 and total system memory is anticipated to increase by a factor of 200, required storage capacities
will approach an exabyte (EB) with an I/O bandwidth requirement of 60 TB/sec. Meeting these chal-
lenges using traditional disk-based storage technologies would require 200,000 disk drives even under
the scenario that bandwidths and latency improvements continue to trend as they have in the past. It
is clear that fundamental research and development of new storage technologies and data transfer will
be required. In a similar vein, it is clear that existing approaches to storage system access, primarily
POSIX file system interfaces, will face significant challenges in scaling to future systems. In this regard,
an example of some of the success enjoyed by industry, in 2010 the largest Bigtable instance (a no-SQL
store) at Google already exceeded 70 PB.
As common software stacks are identified and end-to-end workflow patterns emerge, facilities will need
to operationalize and support key services for data intensive science communities.
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Table 3.3: The following table summarizes data needs and networking demands for a few key instrument types of
CNMS.

·   Users and staff generate output 

from calculations or experiments.  

Results based on electronic 

structure, Monte Carlo, mean field 

theory, and dynamics calculations 

can be a significant fraction of the 

memory available on the computer 

platform.

·   Users will generally desire to 

transfer data files back to their 

home institutions for future 

reference, analysis, etc.  

·     Case 1: ~10 

minutes (1 per 

day per project)

·   Case 1: ~10 

minutes (a couple 

per week per user 

project)

·   Memory ranges from several 

hundreds of GB on clusters to tens 

to hundreds of TB on capability 

machines.

·     Case 2: ~10 

minutes – 2 hrs 

(only a few per 

quarter)

·   Case 2: similar 

data traffic as LAN, 

longer times for 

transfer; depending 

on site of transfer

·     Case 3: a few 

minutes (10 per 

day)

·   Case 3: similar 

data traffic and 

transfer times as 

LAN

·     Case 4: few 

minutes (2 per 

week/project)

·   Case 4: Same as 

LAN

·     Case 5: ~10 

minutes (1‐2 per 

day/project)

·   Case 5: Same as 

LAN

·     Case 6: a few 

minutes (1 or 2 

per 

week/project)

·   Case 6: Same as 

LAN

·     Case 7:  a 

potential growth 

area; up to 

10/day

·   Case 7: Same as 

LAN

·     All seven: 

Significant 

adoption of high‐

throughput 

simulation‐based 

screening has the 

potential to 

increase data sets 

sizes and 

requried LAN 

transfers by 

several orders of 

magnitude.

Key Science Drivers Anticipated Network Needs

Science 

Instruments and 

Facilities

Process of Science Data Set Size
LAN Transfer 

Time needed

WAN Transfer 

Time needed

·     Theory/simulation‐

driven materials by 

design (high‐

throughput screening).

Near Term (0‐2 years)

·     Electronic structure 

calculations, quantum 

many‐body 

simulations, molecular 

dynamics (quantum 

and classical; atomistic 

and mesoscale), mean 

field approaches, 

statistical simulations 

on large computer 

clusters and capability 

computing systems.

·     Quantum transport 

in nanostructures and 

virtual STM imaging.

·     Self‐assembly of 

nanostructured 

materials.

·     Statistical physics in 

non‐equilibrium 

systems.

·     Emergent behavior 

in strongly correlated 

electronic systems.

·   Simulations can generate several 

hundred GB of data (composition: 

simulation results, input files, and 

restart files; ~5 files total). Restart 

files, production data/results (10‐

100GB) depending on the specific 

type of calculation:

·   Case 1: CCSDT/aug‐cc‐pvtz for a 

heteroatom supramolecular complex 

of 60‐100 atoms (100‐500 GB)

·   Case 2: molecular dynamics for a 

million atom molecular system with a 

trajectory dump for the (p,q) every 

10 fs over each trajectory spanning 

times of 100 ps  ‐ 100 ns (100GB‐

1TB)

·   Case 3: plane wave periodic 

electronic structure calculations for 

heteroatom supercells of 100‐500 

atoms (10‐50 GB)

·   Case 4: DCA++ calculations (5‐10 

GB)

·   Case 5: QMC for 100 + atom 

systems (10‐100 GB)

·   Case 6: DMRG calculations on GMR 

(1‐5 GB)

·   Case 7: experimental data from 

scanning probe microscopies, 5‐200 

GB per sample (5‐10 samples/day); 

STEM,TEM up to 1 TB/day 

·   All seven of the above case studies 

will increase in the amount of data 

produced as faster hardware is 

deployed: for case 1 we will be able 

to treat a larger systems and/or 

larger basis sets; case 2 longer time 

scales; case 3 larger supercell sizes; 

case 4 enhanced details for models of 

inhomogeneities and multi‐orbital 

Hubbard models, greater number of 

calculations; case 5 larger system 

sizes; case 6 larger system sizes; case 

7, greater number of scans and 

including larger number of 

instruments.

60



·   Same as above but  10‐100 larger 

capacities (compute and data).

·   Users will continue to need to 

move experimental and simulation 

data/results between SNS, EFRCs, 

Hubs, CNMS, computational 

resources (both capacity and 

capability compute systems), home 

institutions.

·   By 2020 we expect to have 

exascale computing capability.

2‐5 years

·     Same as above but 

more use of simulation 

for guiding materials 

discovery and design.

·   Same as above but the average data 

set size will increase toward several 

TB

·   Computing and data storage needs 

to be staged to allow seamless 

transfer of data and simulation 

capability between different major 

sites such as 

SNS/HFIR/CNMS/OLCF/NERSC/ 

EFRC’s/Hubs/…

·   Need improve latency to match 

data volumes

·  Maintaining or 

improving  the 

time to transfer 

the key data for 

the major 

materials science 

codes would be 

important.

5+ years

·   Computational systems will be 

considerably large in capacity.  This 

will enhance the amount of 

simulations completed per day and 

likewise the number of data set 

produced.  

·   A case study is to dump the entire 

system (a projected 64 PB task).  This 

would require 32 minutes with a LAN 

of ~33 Tbs and a high quality service 

for network reliability and latency.

·    Would expect 

an increase in the 

number of data 

sets transferred 

as well as the size 

of the data sets.
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Case Study 4

Combustion Research Facility

4.1 Background

The combustion research community is diverse and geographically distributed, and involves many re-
search institutions around the world. Research in combustion science aims to provide a fundamental
and predictive understanding of the complex multiscale processes that are present in a variety of trans-
portation, propulsion, and power systems. It involves a wide range of computational and experimental
techniques that span from the atomistic scales associated with chemical reactions to continuum scales
associated with the exchange of mass, momentum, total energy, and species in reacting flow systems.
Challenges involve treatment of turbulence, advanced fuels, multiphase flows, and catalytic systems, to
name a few. A key objective is the construction of predictive models such as those that describe the mul-
tiscale interactions between turbulence and chemistry that can ultimately be assembled into engineering
design tools for development and optimization of device-scale combustion processes.
Given the many multiscale and phenomenological challenges, the combustion community relies on in-
terdisciplinary communication and integration of research results through a variety of experimental and
simulation approaches. Establishing synergy between different techniques such as advanced laser
diagnostics and state-of-the-art computations that make use of the full hierarchy of computational re-
sources (e.g., desktop computers, mid-scale computer clusters, leadership class computing facilities)
is an integral part of the research workflow. The scale at which both computational and experimental
data acquisition techniques are producing information is now occurring at unprecedented rates. The
growth in data output, coupled with the inherent need for collaborative exchange of information, is now
challenging many assumptions about how the scientific process can efficiently operate. These changing
paradigms often require advanced networking capabilities coupled with new software tools to use them.
New experimental techniques involving high-repetition rate laser diagnostics, and numerical techniques
such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES), currently impose some
of the most challenging requirements to ESnet.

4.2 Collaborators

Sandia National Laboratories (SNL) Combustion Research Facility (CRF) illustrates an example of col-
laborative activities that occur in the combustion science community. This facility is a special-purpose
DOE Office of Science collaborative research facility. It is distinguished by a multidisciplinary com-
bination of activities that range from fundamental research in combustion chemistry, reacting flows,
and laser-based diagnostics, to applied research focused on high-impact combustion systems such as
internal combustion engines, coal and biomass combustion, industrial burners for process heat, high-
temperature materials processing and manufacturing, and related environmental and defense applica-
tions. The CRF as a whole averages about 150 collaborators per year (those engaged in a research
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project with one or more of the technical staff) and about 1500 visitors per year (those working on active
research projects onsite, wanting to see various laboratories, attend technical workshops, or discuss
current and future collaborations). Many other institutions (e.g., national laboratory, academic, and in-
dustrial) follow the same type of approach on an international level. Core research typically involves
broad collaborative interactions that combine experiments, theory, and computation. Both local and
remote exchange of data is a routine part of the research workflow.

4.3 Near-term Local Science Drivers

4.3.1 Instruments and Facilities

It has become increasingly recognized that a hierarchy of local and national hardware resources are
necessary to support computationally intensive research in all scientific disciplines. Progress depends
on ready access to all parts of the hierarchy, and on the complementary integration of its components,
both locally, and between centers. This notion was effectively expressed in a seminal report in 1993
to the National Science Foundation entitled “Exploiting the Lead in High Performance Computing” by
L. Branscomb (NSB 93-205, August 1993), and reiterated by the BESAC group in an Office of Science
report entitled “Opportunities for Discovery: Theory and Computation in Basic Energy Sciences” in Jan-
uary 2005. Since this time, cluster computing and “mid-scale” systems have played an increasingly
important role in the scientific enterprise.
The use of such a hierarchy of resources is now a mainstream approach applied in the combustion com-
munity. A foundational cornerstone of the CRF numerical combustion program, for example, has been
facilitated by the Combustion Research and Computational Visualization Facility (CRCV) established in
2010. The CRCV was designed specifically to support collaborative research in computational combus-
tion and includes an optimal combination of collaboration space, visualization facilities, and infrastructure
to support a variety of computationally intensive tasks. It houses a state-of-the-art computer laboratory
designed with ample power, cooling, and floor space to handle routine and sustained deployment of
a variety of mid-scale high-performance computational equipment. The most recent system is a BES-
funded 50-teraflop cluster with 5376 processing cores and a 600 TB parallel (Lustre) file system. The
CRCV supports both in-person and remote collaborations. The visualization and conferencing rooms
enable both small and large groups to collaboratively view and work with complex data sets. A variety of
modern collaborative tools are available to facilitate visitors, remote collaborations, and/or related com-
bustion community activities such as the “International Workshop on Measurement and Computation of
Nonpremixed Flames”’1 and the “Engine Combustion Network”2. For cases when a given job fits on local
systems, production calculations performed on dedicated mid-scale systems provide fast and routine ac-
cess to pertinent research results without the overhead associated with large-scale resources. Similarly,
preliminary calculations performed on mid-range systems help identify critical issues and phenomena of
interest prior to accessing large-scale computing resources such as the Oak Ridge Leadership Comput-
ing Facility (OLCF) or the Argonne Leadership Computing Facility (ALCF). This enables more efficient
use of these facilities.
In addition to the computational hierarchy, experiments in combustion are now also beginning to gener-
ate significant needs associated with local and remote data transfer. Groundbreaking high-repetition rate
diagnostics, imaging detectors, and data acquisition has significantly transformed experimental investi-
gations of the structure and dynamics of turbulent combustion. For example, the reacting flow program
at the CRF involves a variety of experiments that employ multi-scalar point and line measurements and
planar laser-induced fluorescence imaging of select flame marker species to obtain the instantaneous
scalar mixing field and flame structure. In addition, particle-based velocity measurements are used to
characterize various reacting flow fields. More recently, efforts have been focused on time-resolved
imaging of transient flame structures undergoing phenomena such as extinction and reignition in tur-
bulent jet flames. The experimental benchmark data serve as a basis for evaluation and development

1I.e., the “TNF Workshop,” see www.sandia.gov/TNF
2I.e., the “ECN Workshop,” see www.sandia.gov/ECN.
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of turbulent combustion models throughout the combustion community. These efforts are coordinated
on an international level through collaborative activities such as the TNF and ECN workshops. Within
this construct, researchers meet to exchange data, validate and develop models against the benchmark
data, and plan new experiments on a regular basis. Through constant web, email, and in person collabo-
rations and meetings, this consortium of researchers has made progress well beyond that possible by in-
dividual researchers. With expanded access to both experiments and simulations, we anticipate that the
size and breadth of a given collaborator base in combustion research will increase significantly.

4.3.2 Software Infrastructure

Combustion typically involves heterogeneous chemically reacting and/or multiphase mixtures that have
a variety of complicating factors including highly nonlinear chemical kinetics, small-scale velocity and
scalar-mixing, turbulence-chemistry interactions, compressibility effects (volumetric changes induced by
changes in pressure), and variable inertia effects (volumetric changes induced by variable composition
or heat addition). Coupling between processes occurs over a wide range of time and length scales,
many being smaller than can be resolved in a numerically feasible manner. Further complications arise
when liquid phases are present due to the introduction of dynamically evolving interface boundaries and
the complex exchange processes that occur as a consequence. At the device level, high performance,
dynamic stability, low-pollutant emissions, and low-soot formation must be achieved simultaneously in
complex geometries that generate complex flow and acoustic patterns. Flow and combustion processes
are highly turbulent (e.g., integral-scale Reynolds numbers of order 100,000 or greater), and turbulence
dynamics are inherently dominated by geometry and various operating transients. In modern systems,
operating pressures now approach or exceed the thermodynamic critical pressure of liquid fuels (and
oxidizers in the case of liquid rocket engines). Operation at elevated pressures significantly increases
the system Reynolds numbers, which inherently broadens the range of spatial and temporal scales
that interactions occur over. Because of the complex multiscale nature of the problem, no one experi-
mental or simulation technique is capable of providing a complete description of these processes. The
highest quality experiments only provide partial information due to limitations associated with various
measurement techniques. Likewise, solving the fully coupled equations of fluid motion, transport, and
chemical reaction using the Direct Numerical Simulation (DNS) technique can only be applied over a
limited range of turbulence scales in highly canonical domains of only a few centimeters in size due
to prohibitive computational demands, even at exascale. Thus, a variety of approaches are used for
simulation and analysis, and this trend will continue in the long term.
While petascale computing has enabled the application of DNS for treatment of three-dimensional re-
acting flows with detailed chemistry, the largest DNS runs to date are off by more than an order of
magnitude in Reynolds number compared to practical devices. Thus, results from DNS are potentially
useful to better select underlying physical assumptions used in modeling and to understand fundamen-
tals related to small-scale phenomena. However, results can only be viewed as a first step and cannot
be considered fully conclusive due to the limited dynamic range associated with the canonical flows em-
ployed. Conversely, the Reynolds-Averaged Navier-Stokes (RANS) approximation employs filtering in
time to derive the governing conservation equations for the mean state. For this approach, all dynamic
degrees of freedom smaller than the largest energy containing eddies in a flow are modeled to minimize
the cost of the calculations. RANS is currently the primary method used for industry relevant engineering
calculations since it is the least costly. However, since the models must represent dynamic interactions
over the full range of spatial and temporal scales in a flow, they are the least universal in character and
provide the lowest level of fidelity. These models inherently involve many tuning constants that must be
calibrated on a case-by-case basis.
The Large Eddy Simulation (LES) technique falls between the two limits of DNS and RANS. The large
energetic-scales are resolved directly and the subgrid-scales are modeled. Just like one chooses the
resolution at which a photographic image is resolved, one can conceptually choose the resolution at
which pertinent broadband structures of a flow are resolved using LES if validated subgrid-scale models
are available. As the spatial and temporal resolution is increased, the cost associated with a calculation
increases, but the range of scales over which the system of subgrid-scale models must work becomes
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proportionately less and they tend to be more universal in character. Given these attributes, LES can
represent a range of scales from the DNS limit to RANS and is used as both a tool for scientific discovery
(using high-fidelity albeit more expensive first principles models) and for engineering design (using less
expensive albeit less universal engineering-based models). DNS and LES impose the most stringent
demands on computational and networking infrastructures.

4.3.3 Process of Science

The limitations and challenges associated with turbulent combustion research and the related develop-
ment of chemical kinetics mechanisms requires that a hierarchy of approaches be taken to fully under-
stand key processes and work toward predictive models. From this perspective, the process of science
always involves significant interactions between theory, experiments, modeling, and simulations. Each
approach complements the others. The process for typical combustion simulations involves three key
stages: (1) programming and software readiness, (2) production run preparations and execution, and
(3) post-processing. Programming and software readiness involves first determining and testing op-
timum programming models for multicore processors through performance monitoring and use of (for
example) MPI, OpenMP, OpenACC, and/or CUDA. It then involves implementing and testing collective
I/O and standardized I/O formats (e.g., HDF5 or NetCDF) as part of the selected programming model.
Production run preparations and execution involves first a series of preparatory runs to determine the cor-
rect selection of numerical and physical parameters. These are typically performed on local mid-scale
clusters. Then, after the correct setup is achieved, production runs are typically (but not necessarily
always) run on the larger leadership class platforms such as OLCF or ALCF. Compute time on leader-
ship class platforms is facilitated by either the Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) program or the ASCR Leadership Computing Challenge (ALCC) program.
Production calculations funded by the Office of Science are also run at the National Energy Research
Scientific Computing Center (NERSC).

4.4 Near-term Remote Science Drivers

4.4.1 Instruments and Facilities

The main facilities used remotely for combustion science are the Oak Ridge Leadership Computing Fa-
cility,3 Argonne Leadership Computing Facility,4, and National Energy Research Scientific Computing
Center.5 Compute time on leadership class platforms is facilitated by either the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program, or the ASCR Leadership Comput-
ing Challenge (ALCC) program. Once awarded a grant, the infrastructure associated with these centers
becomes available to facilitate the collaborative research activities. Data transfer between these remote
facilities and home institutions typically involves movement of large-scale datasets generated using DNS
and LES.

4.4.2 Software Infrastructure

Production calculations performed on local mid-scale clusters typically require 1–5 million CPU hours
and generate 10–50 TB of data. Production calculations performed remotely in leadership class plat-
forms typically require 10–50 million CPU hours and generate 100–500 TB of data. This type of workflow
occurs approximately 4–8 times a year. Smaller amounts of data are transferred to various collaborators
across the country to universities more frequently (approximately 6 times a year). The size of respective
datasets is approximately doubling every year, which highlights a need to shift the workflow more toward

3www.olcf.ornl.gov
4www.alcf.anl.gov
5www.nersc.gov

65



in-situ on-the-fly data processing that makes use of restart capabilities to extract new data from a given
case as needed. Shifting the workflow in this direction will make the size of the data that needs to be
stored relatively smaller (i.e., restart files of initialized primitive variables versus time correlated frames
of processed data fields) at the expense of increased CPU time. Restart files are typically written hourly.
As jobs are running, health is monitored (both locally and remotely) using various data analytic and
plotting packages.
Post-processing involves a combination of tasks. Raw data from respective calculations are processed
locally or remotely depending on the size, and feasibility of moving the output files. In most cases, local
data is stored on the same cluster that the runs are done on. Typical local capacities are now on the
order of 0.5–1 PB. Calculations being performed on leadership class platforms are typically processed
remotely using the large-scale facilities at respective computer centers (e.g., OLCF, ALCF, or NERSC).
Data is typically archived for approximately 5 years since it might be revisited multiple times by the
modeling community. However, depending on the case, a measurable fraction of the data generated is
also replaced by newer more accurate calculations as improvements in either the solution fidelity and/or
models employed are made. Typical post processing involves a variety of software packages such as
ParaView, EnSight, VisIt, Tecplot, and MATLAB. Remote rendering is employed routinely to minimize
the need to move large data sets from remote to local resources.

4.4.3 Process of Science

Analysis and visualization of simulation data at remote sites is a common use model for all simulation
scientists. Use includes the transfer of images and graphs of a running simulation using in-situ visu-
alization. It also includes much more data-intensive operations such as the transfer of processed data
for further analysis and visualization. Assuming that in-situ processing of data results in a reduction of
two orders of magnitude, a simulation using all of the memory on (for example) the OLCF Titan platform
would produce 6 TB of processed data per time step. If a simulation takes 10 minutes to compute a time
step, this would be equivalent to a data rate of 80 Gbps.
Combustion simulations are currently being transitioned to work more efficiently on hybrid architectures
and many of the analytics are being placed inside the simulation workflow at runtime to reduce the net
amount of raw data that needs to be stored and/or transferred. As such, interactive remote data pro-
cessing and visualization is becoming a common necessity for analysis of combustion data. Currently,
this method does not place high demands on the WAN. (A typical 1,000 by 1,000 pixel image sent over
the network at 5 frames per second only requires 0.12 Gbps.) However, as more users begin to simul-
taneously perform remote visualization using this method, the data rate required will increase linearly
(e.g., 1000 users simultaneously would require 120 Gbps).

4.5 Medium-term Local Science Drivers

4.5.1 Instruments and Facilities

There are two areas where significant investments will be made in the next 2–5 years. The first will be
continued upgrade and expansion of local mid-scale computer systems, which currently support both
experimental and computational research especially in the areas of DNS and LES. As described in the
example above, the CRF CRCV houses a state-of-the-art computer laboratory designed with ample
power, cooling, and floor space to handle routine and sustained deployment of a variety of mid-scale
high-performance computational equipment. The most recent is a BES funded 50-teraflop system with
5376 processing cores and a 600 TB parallel file system. The average lifetime of mid-scale systems
such as this is approximately 5 years. Each new system is significantly more powerful than the previous.
To stay current with evolving computer architectures, while at the same time providing the capacity
required to sustain expertise in state-of-the-art numerical combustion calculations, new clusters will
continue to be replaced using the most recent hybrid architectures. Mid-scale clusters typically follow
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closely the basic design of leadership class systems such as the OLCF Titan CRAY XK7, but at a much
smaller scale using mostly commodity hardware. Following this approach, recently proposed mid-scale
systems are LINUX-based using computational nodes designed with dual-socket motherboards with (for
example) AMD Opteron “Abu Dhabi” 6376 16C, 2.3/3.2GHz CPUs (32 cores/node). In addition, nodes
are equipped with (for example) dual NVIDIA Kepler k20 GPUs. The communications interconnect is
designed using Quad-Data-Rate (QDR) Infiniband with full bisectional bandwidth. The system is racked
in the standard way and powered using standard Power Distribution Units that connect to 208 Volt, three-
phase busses widely available in local facilities. Systems are typically configured to provide 2-gigabytes
of RAM per core within each node, and include a Network File System over Infiniband with at least 400
TB of usable disk space. They also include provisions to connect to existing local high-speed Lustre file
systems. The systems include fully configured operating systems, cluster management software, related
licensing, and supporting peripheral equipment required for operation. While the total cost of a given
system can be scaled up or down based on available funding levels and needs, an example of a modern
system available in 2014 that costs $750,000 provides approximately 45 compute nodes (i.e., 1440
processor cores and 90 GPUs). Such a system will provide a peak theoretical speed of approximately
200-teraflops, which is approximately four times faster than the existing machine deployed in 2010 at
25% less in cost. Networking between local systems and remote computer centers (e.g., ALCF, NERSC,
OLCF) will be pertinent, with emphasis on optimal management.
The second investment is related to the amount of data being generated from experiments, which is
increasing exponentially as significant capital investments are made in laboratories such as the CRF
Advanced Imaging Laboratory. New high-speed imaging systems, for example, are starting to provide
information about turbulent flames that will be unique worldwide. Current experimental campaigns in-
volve parametric studies that involve on the order of 10 cases per year that generate on the order of 1
TB of data per case. Over the span of 2–5 years it is anticipated that this volume will increase by at least
an order of magnitude. Thus, data acquisition systems that are currently housed and self-contained
within the laboratories (e.g., a basic NFS RAID stack with 15 TB of capacity) will be replaced by larger
and faster systems housed within mid-scale computer centers such as the CRF CRCV. These data will
eventually require the use of larger remote facilities. In addition, multi-core processor capabilities for
data analysis will be required that can be used both locally and remotely.

4.5.2 Software Infrastructure

Needs related to the required software infrastructure are identical to the current needs described in
this case study. However, these will need to be addressed in a manner consistent with the direction in
hardware design taken to achieve exascale performance.

4.5.3 Process of Science

The process of science will not change over the next 2–5 years compared to that described already.
However, it will need to be optimized. An example of a typical DNS simulation over the next 5 years is
as follows. A 20-petaflop run will produce 10 PB of data per checkpoint file. I.e.,

10billionnodegrid ∗ 80variables ∗ 8
bytes

variable
= 6.4T B. (4.1)

If 200 checkpoint files are written out at approximately 1 file per hour in a 7–10 day run, the data gen-
eration rate is approximately 20 Gbps. If the data is moved elsewhere at the rate it is generated, then
we need a to move data at 20 Gbps. The network will need an even higher bandwidth to account for
overheads due to protocol, metadata, contention, etc. The current goal is to stream data to an analysis
and rendering machine as it is produced rather than waiting until the run is complete. Then, known anal-
ysis tools can be applied to the data as it is generated to get an initial understanding of the underlying
physics. Subsequent iterative analysis can then be performed off-line. Automated workflow scripts will
facilitate the data streaming, morphing, archival, and analysis. Data will need to be moved to platforms
and archival storage within a supercomputing center. Reduced data will be transferred to local facilities
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such as the CRF CRCV for refined analysis and rendering. To strike a balance between the size of data
to be moved and speed at which it can be generated, typical simulations (e.g., DNS, LES) will be instru-
mented with in-situ feature detection, segmentation and tracking to enable data reduction and querying
on-the-fly, thereby reducing the amount of data for further analysis and enabling steering of adaptive
I/O. In addition, web-based portals developed for sharing simulated benchmark data with a modeling
community of approximately 50 to 100 international collaborators at national laboratories, universities,
and industry will be developed. The goal is to deploy a scalable, extensible framework for analyzing
large data from both computations and experiments. The framework will ideally adopt standardized
formats, translators, graphics, combustion analysis software, parallel feature detection and tracking li-
braries, and query tools that can operate on portions of the data at the supercomputing facilities where
the data resides. Reduced data and remote visualization results will be sent back to institutions via
ESnet.

4.6 Medium-term Remote Science Drivers

4.6.1 Instruments and Facilities

The needs and goals outlined by major DOE computer centers such as ALCF, NERSC, and OLCF are
consistent with the needs for combustion research. Optimizing the interplay between how local and
remote facilities are used in a complementary way will then be the key challenge.

4.7 Beyond 5 years

A long-term goal in combustion research is the development of predictive multiscale models for turbulent,
chemically reacting, and/or multiphase flows. Emphasis is typically placed on priority research directions
identified in two recent DOE workshop reports: the SC-BES-sponsored “Workshop on Clean and Effi-
cient Combustion of 21st Century Transportation Fuels,” and the jointly sponsored BES and EERE-VTO
“Workshop to Identify Research Needs and Impacts in Predictive Simulations for Internal Combustion
Engines.” Needs are centered on two central issues. The first is addressing the basic science issues
that limit our ability to simulate turbulent combustion. The second is addressing critical needs related
to development of enabling software and the Information Technology (IT) infrastructure required to sup-
port collaborative model development. Success hinges on simultaneously advancing capabilities in the
area of simulations, experimental diagnostics, and joint analysis of measured and modeled results in
a manner that provides detailed validation data and the broad discovery-based research required for
rapid development of predictive models. Current capabilities are lacking in all of these areas. Diag-
nostic techniques are limited. Numerical techniques are prone to many forms of error. Data reduction
techniques are subject to many simplifying assumptions. There are many uncertainties. Thus, pertinent
questions related to model development cannot be answered definitively. It is impossible to answer
these questions through isolated research efforts and loosely formed collaborations. Instead, a con-
certed effort between experimental and computational researchers is necessary to provide a structured
and well-coordinated framework.
Initial successes in facilitating joint collaborations in combustion have been achieved through interna-
tionally recognized forums such as the “International Workshop on Measurement and Computation of
Turbulent (Non)Premixed Flames”6 and the “Engine Combustion Network.”7 These workshops have pro-
vided a widely recognized level of success within the broad community of experts through annual and/or
biennial meetings at various locations around the world, coupled with remote meetings held consistently
on a more regular basis (e.g., monthly). To date, support for these forums has been voluntary and

6The “TNF Workshop,” www.sandia.gov/TNF
7The “ECN Workshop,” www.sandia.gov/ECN
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expansion has been limited. Neither has a truly state-of-the-art web-based infrastructure. Such an ar-
rangement will enable frequent and efficient remote collaborations. Thus, there are significant benefits to
be gained through development of a dedicated IT infrastructure that caters to the complementary needs
of these types of activities. A central goal is to foster synergistic relationships by providing a platform
for collaborative model development and validation while providing a common set of well-documented
openly available software and databases with web-based access.

4.8 Data, Workflow, Middleware Tools and Services

The dramatic increase in the amount of data generated in future simulations will necessitate a relative
decrease in the amount of I/O possible. Currently, the size of respective datasets from DNS and LES
is doubling every year, which is not sustainable. This will necessitate a large movement toward in-situ
data analysis and visualization at runtime. Thus, the role of scientific data management middleware will
be key in providing the software infrastructure that exploits current petascale and future exascale archi-
tectures ability to overlap data analysis with I/O. The computational power of processors will be used
to reduce the need for data output by building I/O systems that enhance massively parallel methods for
data movement with extensive processing resources to manipulate and reduce data before it is moved.
Since I/O will become a very constrained resource, it is expected that the adoption of I/O middleware
libraries will significantly accelerate over the next five years, with the majority of HPC applications using
some middleware system after this point. This is especially true for combustion science applications.
Scientific workflow tools are also likely to increase in prominence, especially for scientific analyses that
involve parameter sweeps or manage ensemble runs. Workflows that extend beyond the individual com-
puter system are also likely to see greater adoption, including management of archival storage, off-site
data transfer, exploitation of multiple computing systems, and distribution to web-based portals.
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Table 4.1: The following table summarizes data needs and networking requirements for the CRF.
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Case Study 5

Linac Coherent Light Source

5.1 Background

Linac Coherent Light Source (LCLS), the world’s first hard X-ray free-electron laser, pushes science to
new extremes with ultrabright, ultrashort pulses that capture atomic-scale snapshots in quadrillionths of
a second. These images can reveal never-before-seen structures and properties in matter, and can be
compiled to make movies of molecules in motion. Since its 2009 launch, LCLS has drawn researchers
in a wide array of scientific fields from around the globe to explore the innermost workings and properties
of common and exotic materials at the nanoscale. LCLS features six specialized instrument stations,
each with a dedicated team of scientists and support staff, to conduct pioneering research and assist
users with experiments. Each station is equipped with a suite of instruments to assist in gathering a
wide range of data using various specialized techniques, from telltale signatures of electrons and ions
to the intricate patterns left by crystallized samples struck by the X-ray laser.

5.2 Collaborators

Roughly 50 experiments are run at LCLS each year. The scientists work in collaborations ranging from
10–50 collaborators. Beam time is awarded by proposal process with a 25% acceptance rate. The
diversity of the science cases is demonstrated by the schedule from early 2014.1

LCLS users are responsible for complying with the data management and curation policies of their home
institutions and funding agents and authorities.

5.3 Near-term Local Science Drivers

5.3.1 Instruments and Facilities

The experimental facilities are at LCLS generally referred to as the Far Experimental Hall (FEH) and
the Near Experimental Hall (NEH). These facilities are physically separated from the main part of the
campus. The instruments, experimental apparatus and experiment Data Acquisition (DAQ) Systems are
controlled via kiosk nodes in the experimental control rooms. The typical user will not have any remote
access to the kiosk nodes.
Each experimental control room has nodes for local login to LCLS offline compute and disk resources.
These nodes also have external access. LCLS supplies on-site disk, tape and compute resources for

1See http://www-ssrl.slac.stanford.edu/userresources/documents/lcls-scheduling-run_8.pdf.
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prompt analysis of LCLS data, and software to access those resources consistent with the published
data retention policy. Data storage is provided for raw detector data and derived data from analysis. The
raw data formats are XTC files or HDF5 files on demand. The raw data is written to archival tape storage,
with the robotic storage located in the computing center on the main area of campus. Live disk storage is
provided, (currently 6 PB total), with raw data maintained for 6 months. Several batch processing farms
(Infiniband connected) are located in NEH and FEH. Compute resources are preferentially allocated
to recent and running experiments. Each instrument gets a dedicated file system for caching data of
on-going experiments. The current experiment gets preferred access to the data cache.
LCLS integrates 2 PB of raw data per year. Data rates vary by instruments from 180 MB/s (3 TB/shift)
to 1.5 GB/s for Coherent X-Ray Imaging (CXI) where the event size exceeds 10 MB (30 TB/shift). The
system is file-based with typical file sizes of 100 GB.
Connections to major scientific instruments and other facilities include university computational resources
associated with the researchers, and computational resources at other major national and international
computational facilities such as the National Energy Research Supercomputer Center (NERSC) and the
Deutshes Elektronen-Synchrotron (DESY).

5.3.2 Software Infrastructure

The software infrastructure for LCLS is largely custom-built.
The DAQ system, hardware and software resources are the same for all six of the LCLS instruments,
as distinct from many other lightsources that might have a different system or set of tools at each beam-
line.
Transferring data to portable media such a storage device or laptop is available in the control rooms
via the SLAC Visitor Data Network. A variety of existing tools such as MatLab, IDL, Igor, Python, and
custom frameworks are supported.
Raw data files are cataloged via an iRODS-based system. Data security is enforced by group based
access control.
XTC is a custom format (with associated read/write libraries) developed at SLAC (circa 1995) for the
BABAR experiment, and is used at LCLS by the DAQ as the native raw data format. Simultaneous
read/writes facilitate online monitoring and user access for rapid feedback. The need for special libraries
reduces the portability. The users can request translation from XTC to HDF5 offline, with roughly 10% of
the data being translated. Both formats achieve a factor of 2 compression. A web portal to the tool set
provides access to the electronic log book, the file catalog and other data services, such as changing
file permissions, requesting data be restored from tape storage and managing the HDF5 translation. A
valid SLAC Unix account is required.
LCLS plans to implement additional monitoring to better understand the bottlenecks and usage within
the local system, with tools such as Ganglia and Monit.

5.3.3 Process of Science

The user community is extremely diverse, with typically two new experimental groups coming to LCLS
each week. The typical duty cycle of the experiments is five 12-hour shifts on consequtive days, with
two experiments alternating shifts. The typical postdoc has little time to learn the software environment,
and the approachs to data analysis vary considerably from experiment to experiment.
There is currently no need or plan to reduce the raw data or filter data during data collection during this
phase of LCLS. A fast feedback system is used to tune analysis and algorithms during data collection.
Further algorithm development will often take place after the experiment.
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5.4 Near-term Remote Science Drivers

5.4.1 Instruments and Facilities

We support two data export machines each with 10 Gbps connections. The current SLAC to ESnet
connection capacity is 2x10 Gbps with plans to upgrade to 100 Gbps.

5.4.2 Software Infrastructure

The recommended tools for exporting the data offsite are bbcp and Globus.

5.4.3 Process of Science

LCLS Computing and NERSC are actively engaged in joint pilot projects to facilitate data transfers to
NERSC, currently to enable the work of individual research groups during there data collection period.
This process has identified a number of bottlenecks, and there are plans to upgrade the SLAC to NERSC
link.
The nature of these transactions was in a “push” mode. Users can use the standard tools such as
Globus to pull the data to the remote sites.
Other user groups do pull reduced data and raw data to their local sites, including transatlantically located
sites. Many groups prefer to use the computing resources at SLAC since it can be labor intensive to
transfer the data, or there are better computing resources while at SLAC.

5.5 Medium-term Local Science Drivers

5.5.1 Instruments and Facilities

The number of beam lines will remain constant at LCLS, however, data will be collected simultaneously
at multiple instruments.
The data rates are expected to increase by a factor of two to five, due to improvements in detector
technologies. Data volumes may also increase due to improved duty factors.
For the LCLS’s Data Management Plan, LCLS plans to continue to offer the current data services, access
and curation as it does now. These policies cover raw data only. The users are responsible for curation
of the reduced data, data used in publications, and curating the algorithms.

5.5.2 Software Infrastructure

We anticipate mostly incremental changes to the infrastructure with the possible exception of a tran-
sition to HDF5 if simultaneous read/writes become enabled. Our primary projects in this area are to
insure seamless integration with NERSC such that the users will be able to submit analysis workflows
transparently regardless of whether the data is at SLAC or at NERSC.
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5.5.3 Process of Science

Many of the experiments that will run at LCLS will be second or even third generation; we expect that this
will increase the familiarity of the users, and the readiness and sophistication of their algorithms during
the fast feedback phase. This is likely to encourage more analysis at offsite locations due to competition
for resources at SLAC.
The European X-ray Free Electron Laser (XFEL) facility in Germany will begin taking data in 2017.
While LCLS collaborates with XFEL and on SACLA, the Japanese XFEL facility, on some data and
software issues, the systems have significant differences, and the common users may ask for more
commonality.

5.6 Medium-term Remote Science Drivers

5.6.1 Instruments and Facilities

Working with NERSC, we expect to facilitate the ability of users to transparently use NERSC resources
for selected experiments.
We expect that simulations of scientific outcomes, experiments and beam conditions will become com-
mon, which will require transfer of data and information from Supercomputer centers to SLAC for local
analysis. There may be need for simultaneous allocations of time at supercomputer centers and LCLS.
The data volumes may or may not be large, however.
The XFEL will be operation in 2017 and we anticipate that SLAC scientists will be doing experiments
there.

5.6.2 Software Infrastructure

Software infrastructure for XFEL is unknown.

5.6.3 Process of Science

At the XFEL, the process of science in this case will be on a case-by-case basis according to the needs
of the collaboration. We may need to plan for significant network traffic coming from DESY.

5.7 Beyond 5 years

An upgrade to LCLS is in the design phase. The high-repetition rate (1 MHz) and, above all, the poten-
tially very high data throughput (100 GB/s) generated by LCLSII will require a major upgrade of the data
acquisition and storage systems and increased data processing and data management capabilities. The
main challenge will be developing high-density, high-throughput, petascale storage systems which allow
concurrent access from thousands of jobs. Additional critical capabilities include the deployment of a
trigger/veto system, upgrading the SLAC network connection to ESnet and expanding bandwidth and
capacity of the tape archive.
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5.8 Network and Data Architecture

SLAC has two connections to ESnet to provide redundancy. The primary ESnet connection is 100Gbps,
and the backup connection is 10Gbps. SLAC also has connectivity to Internet2 via Stanford University
(this connection is through the Stanford Research Computing Center which is located on the SLAC
campus).
SLAC does not have a specific Science DMZ, but the LCLS provides data transfer nodes for LCLS and
SSRL experiments for high-speed data transfers.

5.9 Data, Workflow, Middleware Tools and Services

LCLS represented a transition in computing workflows, services and data management. At this point,
we are expecting the evolution of tools, particularly in the case of emerging standards or technologies.
We will continue to collaborate closely with other institutions and continue to survey our users to target
our development efforts.
We are considering using a commercial service for the second curated copy of the LCLS data.

5.10 Outstanding Issues

The following represents a personal point of view: the current trends in hardware and other factors are
strongly motivating aggregation of hardware resources into extremely large-scale data facilities. If this
trend continues, there will need to be profound changes in the way that data is managed by relatively
small user groups. This would have considerable impact on networking, security and remote usage
point of view in order to provide a good user experience.
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Table 5.1: The following table summarizes data needs and networking requirements for the LCLS.

·   LCLS has six 

instruments.

·   User driven, fast 

feedback in place.  

Users may use remote 

resources at their home 

institution for analysis.  

Simulations or 

theoretical 

computations not 

included.

·   File based, typical 

file size is 100GB.

·   Custom built 

framework, data 

catalog, and Globus or 

bbcp for transfers.

·   Continue DMP 

support at current level 

of archiving two  copies 

of the raw data locally 

at SLAC.

·   Size of one data set 

= 500 GB.

·   Range of data set 

sizes: 500GB to 3TB 

depending on 

experiment.

·   Data set 

composition is 

typically relatively 

few, large files for 

raw.  Wide variation 

for reduced sets.

·   Intend to support 

some simultaneous 

simulations.

·   Size of one data set 

1TB.

·   25 GB/s steady 

state, 50 GB/sec 

peak.

·   automate integration 

with NERSC on some 

workflows.

·   Range of data set 

sizes: 500GB to 5TB 

depending on 

experiment.

·   Collaborating 

institutions: national 

(NERSC) and 

international. 

(XFEL).

·   SLAC scientists may 

begin working at XFEL.

·   Typically relatively 

few large files.

·   May use some cloud 

services for archiving 

one of the data copies.

·   Possible re‐

evaluation of DMP 

consistent with SC 

directives.

Key Science Drivers Anticipated Network Needs

Science 

Instruments, 

Software, and 

Facilities

Process of Science Data Set Size
LAN Transfer 

Time needed

WAN Transfer 

Time needed

Near Term (0‐2 years)

·   Steady state: 

0.2  GB/s; peak 

1.5 GB/s raw 

data.  Local 

transfers of 

analysis data, 

assume steady 

state of 0.1 

GB/s.

2‐5 years

·   None ·   Steady state: 

2 GB/s; peak 15 

GB/s raw data.  

Local tranfers 

of analysis data, 

assume steady 

state of 1 GB/s.
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·   Expect extensive 

simulation integration 

with experiments.

·   Ideally 

continuously, during 

data collection, 

blurring the line 

between LAN and 

WAN resources.

·   Full‐scale integration 

with  NERSC and/or 

other computing 

centers.

·   Collaborating sites: 

NERSC, 

International, 

University resources 

(derived data), 

XSEDE resources.

·   Serious investigation 

of online filtering or 

zero suppression.

·   Will replace 

components of 

software/hardware 

systems as motivated 

by changing 

technologies, emerging 

standards  or 

bottlenecks.

·   Need highly 

performant petascale 

storage systems.

·   LCLS II will come 

online, increasing the 

number of instruments.  

Detector technology is 

expected to also lead to 

a dramatic increase in 

data volume.

·   Maximum size is 

being determined 

and will depend on 

detector technology 

and the possibility of 

on detector data 

reduction techniques.

·   Steady state: 

20‐50 GB/s; 

peak 50‐100 

GB/s raw data.  

Local transfers 

of analysis data, 

assume steady 

state of 5‐10 

GB/s.

5+ years
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Case Study 6

Materials Project

6.1 Background

The Materials Project’s (MP) goal is to enable data-driven materials design. It will achieve this objective
by (1) using high-performance computing to generate large materials data sets using state-of-the-art
theoretical techniques, (2) integrating existing data generated by the materials community, and (3) dis-
seminating the data in powerful ways. Thus far, most focus has been on using HPC noted in the first
initiative, with preliminary work on the second and third initiatives. Over 30 million CPU-hours worth of
computations have been performed and are freely available at www.materialsproject.org. Over 8000
unique users have registered for access. About 50 users are employing a REST API to access large
amounts of data, and data from outside users are already available on the site.
Most of the current work has been focused on in-house contributions using the NERSC supercomputing
center; computations are performed, stored, and accessed there. However, going forward we envision
more powerful and decentralized ways to build a data resource that requires powerful network technolo-
gies; for example, data might be generated and hosted at several computing centers, and user queries
would combine data sets from multiple centers. In addition, whereas current data access is to a limited
number of post-processed data, in the future we plan to allow downloads of raw data sets and real-time
analysis of complex data (e.g., charge densities). Finally, data are likely to flow into the MP automati-
cally from several instruments, e.g. beam lines at the Advanced Light Source, or conversely scientists
working at these experimental facilities might require real-time launching and analysis of theoretical cal-
culations. Thus the future vision of MP is to expand beyond a single center/data type in a way that
leverages powerful network resources.

6.2 Collaborators

The MP works with funded collabortions as well as unfunded ones. The distinction is that funded col-
laborations require software and scientific developments, whereas unfunded collaborations leverage
existing data, infrastructure and software.
Funded collaborations: The MP powers the computational design—the Electrolyte Genome and the
multivalent cathode design—of the Argonne-led Joint Center for Energy Storage (JCESR) which is five-
year, $20 million DOE hub. The MP is also a funded partner in the NSF-funded SI2 Materialshub (www.
materialshub.org) led by University Wisconsin at Madison and recently with the NREL-led Center for
Next-Generation Materials Design (CNGMD). Furthermore, MP uses its capabilities as a co-PI to predict
novel photocatalysts for the Joint Center for Artificial Photosynthesis (JCAP) (http://solarfuelshub.org)
and is collaborating with Volkswagen and Stanford University on corrosion-resistant magnesium alloys.
Currently, MP partitions funded collaborative, competitive work into secure sandboxes that interact with
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the common public data and algorithms. As an example, JCESR has two extra “Apps” with data and
customized search algorithms which appear only to JCESR affiliated personnel. As work becomes
published, these Apps and data will transition into the public repository. Similar capabilities are planned
for the NREL EFRC and the Volkswagen–Stanford collaboration.
Unfunded collaborations: The MP lends its software and data infrastructure to a number of individuals
and institutions—through a two-way REST interface. Several millions of data records are downloaded
each year, and thousands of data records have been published online as user-contributed data. Several
currently unfunded pilot projects are being pursued to broaden MP’s scope. A pilot project with the Royal
Society of Chemistry (www.RSC.org) is in progress on two-way data sharing. Another project with the
Advanced Light Source (ALS) at LBNL is pursuing data flow on spectrocopy and magnetic alloys to
MP.
We are also collaborating with and supporting a nascent initiative from UC San Diego on sponsoring
computations on demand (MGCloud). The proposal was submitted during the summer of 2014.

6.3 Near-term Local Science Drivers

6.3.1 Instruments and Facilities

We extensively use the NERSC supercomputing center; this year, we have already used 30 million CPU-
hours for the MP and 15 million CPU-hours for a related project, the JCESR. Furthermore, our raw data
( 50TB), databases, and science gateway is hosted at NERSC. We have also purchased a $1 million
computing cluster (“Mendel”) that is managed by NERSC.

6.3.2 Software Infrastructure

We have developed several in-house, open-source software solutions for materials science applica-
tions and for running and managing large high-throughput calculation projects in general. This software
includes the pymatgen materials analysis library and FireWorks workflow software.1 These tools are
generally used to manage, run, and error-correct calculation workflows at NERSC.
In our case, “collaborators” are a community of over 8000 users who depend on the data for their re-
search. The raw data is hosted at NERSC and shared via a science gateway developed and maintained
jointly by the MP and NERSC and through a RESTful interface. Currently, the data is hosted at only a
single source, however we expect that remote replicas will soon be needed to ensure rapid data transfer
and good user experiences. In addition, we expect usage of the REST interface and large-scale down-
loads of data to increase in the future. This is particularly the case if we make more of the raw data (as
opposed to processed data) available to the user.

6.3.3 Process of Science

Locally, our team uses the networking infrastructure of NERSC to download small data sets for local
analysis. However, most data generation and processing is done within the NERSC global file sys-
tems.
Occasionally, we encounter the problem that developers and major MP contributors have to be registered
NERSC users and go through the NERSC firewalls to access and manipulate the MP data and software.
While it is desirable to have a control on core developers, part of the MP team is international and it has
occasionally caused delay.

1These codes and more are available at http://www.github.com/materialsproject.
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6.4 Near-term Remote Science Drivers

6.4.1 Instruments and Facilities

Currently, almost all our work is performed in-house at NERSC. We have pilot projects in terms of
external data contributions from NREL and also the ALS, but these are preliminary. In addition, we
have plans to extend our calculation infrastructure beyond NERSC (see below).

6.4.2 Software Infrastructure

The software tools developed by MP have been successfully deployed on university clusters and the San
Diego Supercomputing Center, and are currently being installed at the Argonne Leadership Computing
Facility. Thus, it is expected that calculations will become more distributed in the future, and we will
need to manage and compile data generated across several centers. At the current moment, almost all
calculations are performed at NERSC.

6.4.3 Process of Science

All users of the MP are in a sense “remote” users as they access the data via a science gateway.
Currently, they are able to browse processed data sets via a rich, interactive web site and access limited
amount of raw data through a RESTful interface. Currently, it is not possible to download the full raw
datasets as we expect that thousands of users downloading tens of terabytes of data could not be
supported by the network. In addition, we require a good way to expose certain parts of our NERSC
project directories to users.
We are also experimenting with allowing users to “suggest” calculations; currently, only a small amount
of information is transferred (the crystal structure), and the user is only exposed to the processed results.
However, we envision a scenario whereby a user could also interact with portions of the raw data set
that are not available today. For example, the full charge density output by a calculation is on the order
of 100MB; to visualize and analyze this kind of file over the network, repeated over thousands of users,
would produce terabytes of network traffic per month.
At least one external web site, the MaterialsHub (www.materialshub.org), uses data from the MP REST
API to power third-party developed applications and toolkits.

6.5 Medium-term Local Science Drivers

6.5.1 Instruments and Facilities

Locally, we expect to use the new supercomputers in development at NERSC. In addition, we plan to
form a partnership with the Advanced Light Source such that computational and experimental data can
be integrated under a common science gateway. We also anticipate that the MP will become a partner
in possibly several future materials design centers. As specified in the latest DOE RFI on Specific Clean
Energy Manufacturing Focus Areas Suitable for a Manufacturing Innovation Institute which mentions the
MP as one of three exemplary partners, together with the NSF-sponsored Network for Computational
Nanotechnology led by Purdue, and the NIST-sponsored Center for Hierarchical Materials Design (CHi-
MaD) led by Northwestern. These Advanced Materials Manufacturing Centers (if funded) will require
increased data production, management, analysis and dissemination/network capabilities.
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6.5.2 Software Infrastructure

Development of the current software tools will continue. We plan to further release tools to allow users
to easily develop and test their own calculation workflows. We also expect to further develop tools that
allow smaller “high-throughput” jobs to run at large supercomputing centers, via techniques such as
advanced checkpointing and job packing.
Sandboxes will continue to grow in number and size. Currently, we are testing incremental database
building that will facilitate the assimilation of several different sandboxes. However, the current infras-
tructure will need to change (or be replicated) to sustain numerous sandboxes. Possibilities include
mirrored MP databases and smart algorithms for updating.
Direct data conduits to ALS, ALCF may be desirable if those efforts become larger than the current pilot
stage.

6.5.3 Process of Science

We expect a combined effort on specific science drivers through target collaborations which extend the
MP’s capabilities as well as leveraging those capabilities as public resources. We expect to increase
our interaction with other materials design centers, highly increased processing and storing of materials
data and algorithms that operate on that data. For example, remote facilities, i.e. other supercomputing
centers, data hosting centers, and database hosts will be incorporated into MP. Improved algorithms in
materials science will be implemented first within the areas in which MP is actively funded.

6.6 Medium-term Remote Science Drivers

6.6.1 Instruments and Facilities

For data generation, we expect to leverage several supercomputing centers such as the ALCF in per-
forming calculations. In addition, we may need to host our data and mirror our databases at several
facilities. Finally, we hope to form partnerships for data sharing with several experimental characteriza-
tion facilities, such that many types of materials data sets can be united within a common gateway and
programmatic interface.

6.6.2 Software Infrastructure

We plan to expand community development of our open-source codes. Furthermore, we plan to release
tools that allow users to build their own custom third-party applications (Apps) based on the MP data set
that can be hosted externally. Thus, development on materials analysis toolkits based on the core data
can be performed and hosted remotely. In addition, we may allow external sites to host their own data
and expose it via a common REST interface. Thus, a common gateway could query data from several
sites and collect them to form a single result, in real-time.

6.6.3 Process of Science

We expect that access to the raw data and to larger data sets will become more important, and users
will demand the ability to download and locally process datasets that are tens of terabytes in size. As
mentioned earlier, the infrastructure may also grow less centralized and thereby more reliant on the
network. Rather than a single data resource hosted locally, the MP would instead become a collection
of resources that are individually managed but connected by the network.
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6.7 Beyond 5 years

We estimate that MP—even using a conservative estimate of constant growth—will be hosting 20,000-
50,000 users worldwide and supporting increasingly larger data set transfers between MP and outside
entities. Until now, we are have relied on NERSC to supply our storage, network capability and data
transfer rate with the outside world. Depending on the growth and demands on MP (as well as the role
of NERSC) this may need augmentation.

6.8 Network and Data Architecture

The network that supports the data transfer to/from MP decides what data can be accessible to the users.
If larger data sets can be transferred within a reasonable time frame, that opens up new possibilities.
Today, MP stays within its capabilities for storage and dissemination as provided. Improved network and
data architecture could instantly help users visualize and download charge densities, ab initio molecular
dynamics trajectories, molecular assemblies snapshots etc. which are not considered today.

6.9 Data, Workflow, Middleware Tools and Services

Better tools for automated backup of large data sets would be extremely useful. In addition, tools to help
set up REST interfaces to distributed data resources would be highly appreciated.
One issue regarding the vision for MP involves network security. While distributed databases and work-
flow systems involving several computing centers are attractive, they can be slowed by network security
issues. For example, one issue regarding our workflow software is that it requires worker computers to
be able to query a “task queue” via MongoDB. However, many supercomputing centers invoke network
security restrictions on their compute nodes that make it impossible to set up such a global task queue
with distributed computing. Instead, one must set up different task queues at the different centers, with
the database hosted on the internal network.
Finally, our data storage needs are challenging in that the raw output files encompass tens of millions of
output files (although the total size is only 50TB). All these files need to be easily accessible because
outputs of prior calculations need to be used to feed the inputs of next-generation calculations, in real-
time for millions of workflows. As all the files are currently stored on NERSC project directories, issues
like latency are not a problem. However, in the distributed computing model a task on Resource A might
require output files that are stored on Resource B. For this to succeed, both resources must be available
and the transfer of data needs to be fast.
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Table 6.1: The following table summarizes data needs and networking requirements for the MP.

·	  	  	  	  Current	  size	  of	  MP	  db	  
is	  50	  TB	  for	  50,000	  
materials.	  This	  data	  
includes	  removal	  of	  files	  
and	  data	  for	  all	  
calculations	  to	  fit	  within	  
reasonable	  NERSC	  
storage.	  
·	  	  	  	  	  Desirable	  data	  
storage	  in	  the	  hundreds	  
of	  TBs	  enabling	  novel	  
visualization	  and	  
transfer	  options.

·	  	  	  Hosting	  of	  data	  
and	  mirroring	  of	  
databases	  at	  several	  
facilities.	  
Partnerships	  for	  
data	  sharing	  with	  
several	  
experimental	  
characterization	  
facilities.

·	  	  	  Increased	  collaborations	  
with	  materials	  data	  
repositories	  and	  facilities	  
will	  increase	  the	  need	  for	  
data	  storage	  and	  transfer	  
rates.

·	  	  	  The	  data	  storage	  
and	  transfer	  rates	  
available	  will	  
determine	  what	  
roles	  MP	  can	  
undertake.

·	  	  	  A	  fully	  networked	  
material	  science	  community	  
could	  develop	  comparative	  
algorithms	  and	  analysis	  on	  
data	  sets	  that	  are	  currently	  
not	  available	  unless	  you	  are	  
physically	  at	  the	  facility	  that	  
collected	  it.

·	  	  	  >	  500	  TB	  as	  
collaborative	  partners	  
and	  data	  sets	  grow.

5+	  years
·	  	  	  Possibly	  petabytes.

Near	  Term	  (0-‐2	  years)
·	  	  	  	  	  In-‐house	  
produced	  data	  and	  
software	  at	  NERSC	  
and	  contributed	  
stored	  at	  NERSC.	  
Pilot	  projects	  with	  
ALS,	  RSC	  and	  ALCF	  
in	  progress.

·	  	  	  	  	  Increased	  collaborations	  
with	  materials	  data	  
repositories	  and	  facilities	  
will	  increase	  the	  need	  for	  
data	  storage	  and	  transfer	  
rates.

2-‐5	  years

Key	  Science	  Drivers Anticipated	  Network	  Needs

Science	  
Instruments,	  
Software,	  and	  
Facilities

Process	  of	  Science Data	  Set	  Size LAN	  Transfer	  
Time	  needed

WAN	  Transfer	  
Time	  needed
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Case Study 7

Theoretical Modeling of Pump/Probe
Experiments in Strongly Correlated
Materials

7.1 Background

We have assembled a global team that is working on calculations to describe pump/probe experiments in
special classes of materials, as performed in large facilities like the Linac Coherent Light Source (LCLS)
at SLAC. Most of the production runs of our calculations take place at NERSC, where we currently are
using 3-5 million CPU hours per year. Data needs to be transferred from NERSC to the different sites
where additional data analysis and visualization tools are applied to the data. This typically includes sites
like Stanford University, Lawrence Berkeley Laboratory, Georgetown University, University of Bonn, the
Institute for Condensed Matter Physics in Lviv, Ukraine, and the Indian Institute of Science in Bangalore,
India. Data files are usually in the hundreds of megabytes to a few gigabytes, and bottlenecks, especially
for foreign transfers are typically coming from Internet issues beyond the control of DOE networks.

7.2 Collaborators

Collaboratoring institutions include:
• NERSC. This is where most of our computation is performed.
• Stanford/SLAC. Tom Devereaux and Brian Moritz lead the efforts here.
• LBL. Lex Kemper is a collaborator here.
• Georgetown University. Jim Freericks leads the efforts here.
• University of Bonn. Michael Sentef is the collaborator here.
• Institute for Condensed Matter Physics, Lviv, Ukraine. This effort is led by Andrij Shvaika.
• Indian Institute of Science, Bangalore, India. Work here is led by Hulikal Krishnamurthy.
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7.3 Near-term Local Science Drivers

7.3.1 Instruments and Facilities

We create our data at NERSC and store it locally there.

7.3.2 Software Infrastructure

Software codes for production runs are created by us. We use facilities at NERSC for transferring files
and archiving them.

7.3.3 Process of Science

After completion of data runs, we often need to postprocess data and visualize it. This is usually done lo-
cally after transferring files from NERSC, although some postprocessing can be done directly at NERSC
allowing the postporcessed files only to be transferred.

7.4 Near-term Remote Science Drivers

7.4.1 Instruments and Facilities

We rely on the Internet for connection to different facilities and between the different collaborators. While
the US institutions are part of Internet2, we rarely find high-speed connections across the coast, because
the data transfers usually cross over to the regular Internet at some point with the concomitant slow down.
The facility we need to maintain connections to is NERSC.

7.4.2 Software Infrastructure

We write our own software for performing the scientific calculations. Currently these codes are producing
small to moderate data sets, but this might change in the future with newer algorithms or with different
types of problems that we are studying. The main need for data transfer is for postprocessing of data
and for visualization. Postprocessing is also done with our own codes. Visualization, on the other hand,
is performed with different software packages (XmGrace, pgplot, Paraview, etc).

7.4.3 Process of Science

Production runs of codes take place at NERSC, as well as initial data storage of results. Data is then
transferred to the primary site where the collaborator who is performing the calculations resides. Data is
then postprocessed, visualized, and often shared with other members of the team. Usually this summa-
tive data results in rather small data sets that can be shared by e-mail or by dropbox or other download
sites. We have not yet engaged in more data-intensive collaboration where multiple collaborators are
looking at and processing visualization software in real time across the network. This is because the
bandwidth usually is not good enough to enable such work.
File sizes are rarely in the few gigabytes of size and usually smaller than that, but Internet connections
to the Ukraine and India are painfully slow, so we minimize data transfers there.
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7.5 Medium-term Local Science Drivers

7.5.1 Instruments and Facilities

We plan to continue to use NERSC for production runs and local resources for post production. This is
unlikely to change.

7.5.2 Software Infrastructure

We are continually developing new algorithms and new software. It is possible that some of the newer
algorithms or newer problems we work on will generate significantly more data than what we currently
use.

7.5.3 Process of Science

We anticipate having a closer interaction with experimentalists and a more materials-specific modeling
of data. This may require more live video conferencing and data sharing than before.

7.6 Medium-term Remote Science Drivers

7.6.1 Instruments and Facilities

Our remote sources will not be changed.

7.6.2 Software Infrastructure

Postprocessing and visualization tools are unlikely to be changed.

7.6.3 Process of Science

We may have the need for more data sharing, for video conferencing, and for more collaborative science
as we work more directly with experimentalists on their results.

7.7 Beyond 5 years

Eventually, it would be useful to be able to share efforts in real time for postprocessing, especially for
different ways to visualize data. It is not clear how much of a higher load this will place on data transfers
by the Internet, but at the moment we do not really think of trying such interactive sessions because
they will not work effectively. As we work more directly with experimentalists, we have to factor in
their needs for data sharing, postprocessing and data visualization to make more collaborative efforts
possible.
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7.8 Network and Data Architecture

The problems we work on can be classified as extreme data science—problems so big that a database
cannot be made of all of the data and the science itself requires one to construct the data by keeping only
important data in a causal way in time. As our algorithms grow, it is likely that these “subset” databases
will be large and need to be stored and transferred from one location to another, but it is too early to tell
how this will pan out.

7.9 Data, Workflow, Middleware Tools and Services

Having automated data transfer tools that can restart after they are stopped prematurely and that can
transfer data in the background with limited supervision—tools like Globus—would always be help-
ful.

7.10 Outstanding Issues

So far our work has not pushed the data handling issues to the current limits that are available, in
part because we find that data transfers can ultimately be slow from one place to another. We try to
have workarounds, including generating and transferring the smallest datasets possible. This code of
operating might change in the future and allow us to have more collaboration in the ways in which we
handle and treat data.
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Table 7.1: The following table summarizes data needs and networking requirements for theoretical research mod-
eling of materials.

·	  	  	  NERSC. ·	  	  	  100s	  of	  MBs	  to	  
10s	  of	  GBs.

·	  	  	  10s	  of	  GBs	  in	  less	  
than	  an	  hour.

·	  	  	  Develop	  codes	  to	  
solve	  the	  quantum	  
many	  body	  
problem	  in	  
nonequilibrium.

·	  	  	  Usually	  dumped	  
to	  a	  few	  files	  
(Green’s	  function,	  
self-‐energy,	  etc).

·	  	  	  Bottleneck	  is	  when	  
data	  transfers	  go	  
over	  the	  
conventional	  
Internet,	  which	  is	  
significantly	  slower.

·	  	  	  Constantly	  
upgrading	  
algorithms.

·	  	  	  May	  change	  as	  
we	  collaborate	  
more	  with	  
experimentalists	  
and	  try	  to	  
examine	  and	  
interpret	  their	  
data.

·	  	  	  This	  is	  unlikely	  
to	  change	  much	  
unless	  new	  
algorithms	  
generate	  
significant	  data,	  
which	  is	  unclear	  at	  
this	  time.

·	  	  	  Same	  as	  above	  
unless	  higher	  data	  
generation	  requires	  
more	  performance.

·	  	  	  Same	  as	  above	  
unless	  new	  
algorithms	  create	  
larger	  data	  sets	  that	  
need	  to	  be	  dealt	  with.

·	  	  	  None	  planned. ·	  	  	  If	  we	  can	  be	  
involved	  in	  more	  
collaborative	  data	  
analysis	  amongst	  
collaborators,	  
especially	  
experimental	  and	  
theoretical	  
colleagues,	  that	  
would	  be	  good.

·	  	  	  Same	  as	  above,	  
unless	  we	  change	  
our	  operating	  
style,	  in	  which	  
case	  data	  transfers	  
might	  grow	  
somewhat,	  but	  
rates	  might	  need	  
to	  be	  much	  faster	  
for	  collaborative	  
engagement.

·	  	  	  Same	  as	  above,	  
unless	  trying	  to	  
collaboration	  in	  real	  
time.

·	  	  	  Same	  as	  above	  
unless	  trying	  
collaborative	  data	  
analysis	  in	  real	  time.

Near	  Term	  (0-‐2	  years)
·	  	  	  Data	  generation	  
is	  for	  two-‐time	  
Green’s	  functions	  
which	  can	  easily	  
require	  10-‐100	  
million	  double	  
complex	  numbers	  
for	  each	  set	  of	  
parameters	  that	  
are	  run.

·	  	  	  Varies	  
significantly.	  But	  
being	  able	  to	  
transfer	  10s	  of	  GBs	  
in	  minutes	  would	  be	  
good.	  Often	  go	  for	  
long	  times	  with	  no	  
data	  transfer	  then	  
need	  tens	  of	  
transfers	  per	  day	  for	  
weeks.

2-‐5	  years

5+	  years

Key	  Science	  Drivers Anticipated	  Network	  Needs

Science	  
Instruments,	  
Software,	  and	  
Facilities

Process	  of	  
Science Data	  Set	  Size LAN	  Transfer	  

Time	  needed
WAN	  Transfer	  
Time	  needed
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Case Study 8

National Center for Electron
Microscopy

8.1 Background

The primary mission of the National Center for Electron Microscopy (NCEM) at the Lawrence Berkeley
Nationa Laboratory is to design, operate and model transmission electron microscopes (TEMs). These
microscopes use coherent electron waves to image materials science and biological samples in real and
diffraction space, using both plane waves and focused probes. The data collected is entirely digital and
requires extensive computer analysis and comes in many different flavors (images, diffraction patterns,
spectroscopic data, energy loss curves, etc). All recorded data must be moved from microscopes to
analysis computers, user data destinations or supercomputing facilities.
NCEM is one of several DOE electron microscopy centers, all attached to DOE Nanoscience Centers.
These microscopy centers exchange resources, ideas and even facilities through the remote microscopy
project.

8.2 Collaborators

NCEM has 7 full time staff scientists and 7 technical staff. It has recently merged with the Molecular
Foundry,1 which has about 20 staff scientists. NCEM serves approximately 250 users from around the
world at any given time. We have worked with NERSC on large-data studies a few times during pilot
projects.

8.3 Near-term Local Science Drivers

8.3.1 Instruments and Facilities

The NCEM is a User Facility operated by the Basic Energy Sciences division of the Department of
Energy, located at the Lawrence Berkeley National Laboratory in Berkeley, CA, USA. We operate ap-
proximately ten TEMs, which collect anywhere from a dozen 2MB images to dozens of multidimensional
datasets up to 0.5 terabytes each, per day. We primarily use the local network or external hard drives to
transfer data between experimental microscope computers and analysis computers, on which we use

1A DOE nanoscience user facility. http://foundry.lbl.gov.
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a variety of software programs to perform analysis. We also simulate various experimental geometries,
primarily on workstation PCs located at NCEM. Our facility has approximately 100 terabytes of local
storage, spread over a dozen or so workstations.

8.3.2 Software Infrastructure

Most TEM data is recorded in proprietary formats provided by the microscope vendors. Vendor software
is used to process and analyze most of the data. Additionally we have written several thousand Matlab,
python and C++ scripts and programs to perform additional data analysis not covered by vendor soft-
ware. Virtually all of our simulation and modeling software is open source or developed internally. We
have recently introduced a new file format based on HDF5 for large datasets but tools for acquisition,
viewing and analysis require further development.

8.4 Near-term Remote Science Drivers

8.4.1 Instruments and Facilities

Currently we transfer some large datasets to NERSC for long-term storage, but we are not yet performing
analysis online at NERSC. These transfers are performed on a data transfer node using 10 Gbps fiber
connections set up by ESnet.
Through the remote microscopy project, one of our most advanced microscopes (TEAM) can be op-
erated at multiple satellite facilities. These facilities have a local computer that can mirror the various
operation screens, as well as inputs from the mouse, keyboard and specialized analog control paddles.
This remote operation requires transmission several large screens and control streams with high-frame
rates and low latency (about 5 million pixels worth of screen space at 60 frames per second, with about
50 milliseconds of latency). High latency was primarily responsible for similar programs failing in the
past. ESnet provides the network transmission guarantees that ensures the required low latency. This
year, NCEM published the first micrographs that were obtained by one of our staff members on the
opposite coast of the United States.

8.4.2 Software Infrastructure

Some users use GUI remote logins for NCEM workstations to run proprietary software not available at
their home institutions. Data backups to NERSC are done over command line or the ESnet and NERSC
web portal resources, such as Globus.

8.4.3 Process of Science

TEM data often require modeling or simulations to fully interpret. It is therefore important for our users to
have access to our codes and the proprietary vendor software. Networking allows our users to remotely
access expensive proprietary software and our internal analysis codes. Often TEM data is transferred
back several times between our staff and our users at their home institutions, with additional analysis,
annotation or reconstructions added at each step.
The usual tool for moving our TEM data and analyses is email. Large datasets are transferred using
LBL webspace or commercial tools such as Dropbox or Google Drive. The analysis tools are completely
decoupled from the networking tools used to move the data around. We have no centralized repository
for either data or analysis codes.
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8.5 Medium-term Local Science Drivers

8.5.1 Instruments and Facilities

With the advent and adoption of new cameras, we expect data rates to skyrocket. The previous gen-
eration of microscopes generated approximately 1 TB/year, but we now own a direct electron detector
that records 16 TB of data in 15 minutes of experiments. If half of our microscopes have new detectors
installed in the next 5 years, we expect data recording rates (of experiments that are successful) to climb
to approximately 10 TB/day.

8.5.2 Software Infrastructure

We hope to develop some kind of central data repository and move to open source data formats over
the next 5 years. We would like to exchange software and best practices with other DOE electron
microscopy facilities.

8.5.3 Process of Science

We plan on sharing far more of our internally developed analysis and simulation codes with users and
collaborators around the world. We have set up a few pilot websites and plan to eventually make all
internal software available online.

8.6 Medium-term Remote Science Drivers

8.6.1 Instruments and Facilities

We will deepen our collaboration with NERSC and move some of the data analysis to purely online
solutions. Raw data should go up the pipeline to the supercomputer, and results and numbers should
be the only data returning.

8.6.2 Software Infrastructure

We currently have no funding to develop better networking or analysis software tools. One key element
will be convincing vendors to unlock proprietary data formats or convert to open-source standards. We
have made some headway in this regard and expect a lot more over the next 5 years.

8.6.3 Process of Science

By following in the footsteps of the X-ray and synchrotron communities, we expect that best practices
and analysis codes will be far more widely distributed through the electron microscopy community in
the next 5 years. We can make use of many of the networking and web tools developed by these
communities for our data.
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8.7 Beyond 5 years

We will purchase at least one new microscope in the next 5 years. We expect that BES will allocate
funding to data processing and this will allow us to develop the tools required to work with the vastly
increased flow of data generated by modern microscopes.

8.8 Network and Data Architecture

All electron microscopy data should be transferred to a supercomputer, where it can be analyzed and
visualized using online tools. This removes the need for our users to purchase or use proprietary soft-
ware remotely. We hope to work with NERSC to migrate our local analysis codes to run purely at the
supercomputing facility and make results from the codes available online via a web interface.
We also plan to expand the remote microscopy program. This would allow the DOE to invest in equip-
ment usable by scientists from all over the world, significantly lowering the barrier to entry for user facility
access for those researchers who are not local.

8.9 Data, Workflow, Middleware Tools and Services

We currently have no standardized analysis workflow for data. We are not aware of tools beyond net-
working applications (such as Globus) available via ESnet. Our small facility is not able to develop fully
mature software solutions internally. We (and our users) are woefully unprepared to handle the massive
increases in data collection enabled by the new generation of detectors.
Ideally we would have some kind of drop-in networking tools than can manage very large volumes of
data, with some kind of access control for users and staff. We are motivated to work with ESnet or other
relevant DOE organizations to develop and/or test such tools.

8.10 Outstanding Issues

Internal data transfer speeds and storage is insufficient for our current experimental data load. We use
external hard drives to move data room to room, but without any overarching organization or constant
backup practices. Dataset fragmentation is a real problem. We want to build an NAS system to centralize
all NCEM data but do not have the expertise to know what hardware to buy, let alone how to set up the
internal network properly to connect microscope PCs and user machines.
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Table 8.1: The following table summarizes data needs and networking requirements for NCEM.

·	  	  	  Newest	  detector	  
can	  collects	  
2000x2000	  pixel	  
images/s.

·	  	  	  Many	  different	  
analysis	  routines	  and	  
software	  codes	  are	  
used,	  for	  many	  
different	  experiments	  
(extremely	  
heterogeneous	  data).

·	  	  	  Images	  require	  
only	  seconds,	  while	  it	  
can	  take	  up	  to	  12	  
hours	  to	  move	  large	  
4D	  datasets.

·	  	  	  Typical	  TEM	  
cameras	  record	  
~100	  images	  
daily,	  a	  few	  
megabytes	  a	  piece.

·	  	  	  Some	  open-‐source	  
software,	  some	  
proprietary	  vendor	  
programs	  and	  some	  
developed	  internally.

·	  	  	  With	  portable	  
drives	  we	  can	  move	  
anything	  up	  to	  4TB.

·	  	  	  Lots	  of	  time	  
series,	  
spectroscopy	  
datasets,	  etc.

·	  	  	  Better	  sharing	  of	  
software	  codes

·	  	  	  More	  use	  of	  open	  
source	  file	  formats.

2-‐5	  years

Key	  Science	  Drivers Anticipated	  Network	  Needs

Science	  
Instruments,	  
Software,	  and	  
Facilities

Process	  of	  Science Data	  Set	  Size LAN	  Transfer	  Time	  
needed

WAN	  
Transfer	  
Time	  
needed

Near	  Term	  (0-‐2	  years)
·	  	  	  2D	  images,	  2	  MB.

·	  	  	  3D	  datasets	  such	  as	  
time	  series,	  focal	  series	  
or	  3D	  tomographic	  
data,	  ~100	  MB-‐1GB.

·	  	  	  4D	  datasets	  such	  as	  
2D	  grids	  of	  2D	  probe	  
images,	  maxing	  out	  at	  
500	  GB.

·	  	  	  	  We	  have	  a	  
data	  transfer	  
node,	  which	  
combined	  
with	  ESnet	  
fiber	  setup	  
gives	  1-‐2	  TB	  
transfers	  in	  
an	  hour	  to	  
NERSC	  tape	  
archive.

·	  	  	  We	  will	  
need	  to	  
move	  many	  
large	  TB-‐
scale	  
datasets	  at	  
once	  from	  
multiple	  
microscope	  
computers	  
to	  lab	  
workstation
s	  or	  NSERC	  
supercompu
ters.

·	  Additional	  
cameras	  that	  will	  
again	  dramatically	  
increase	  data	  
collection	  rates.	  	  
For	  example	  we’re	  
developing	  a	  
detector	  with	  
100,000	  frames/s	  
(1	  MB	  each).

·	  	  	  Same	  dataset	  sizes	  as	  
above,	  but	  more	  of	  
them	  recorded	  daily.

·	  	  	  Similar	  transfer	  
times,	  unless	  we	  build	  
an	  internal	  NAS	  with	  
high-‐speed	  network	  
ports.

·	  	  	  Same	  as	  
above.

5+	  years
·	  	  	  Next	  generation	  
microscopes	  that	  
record	  data	  in	  
many	  channels	  
simultaneously.

·	  	  	  Move	  more	  codes	  
online	  to	  allow	  remote	  
processing	  of	  data	  at	  
NERSC.	  	  This	  will	  
speed	  up	  analysis	  and	  
allow	  users	  to	  perform	  
analysis	  without	  
proprietary	  software.

·	  	  	  Next	  generation	  4D	  
datasets	  may	  contain	  
multiple	  TB	  each,	  
recorded	  in	  1-‐5	  
minutes.	  	  Perhaps	  a	  
dozen	  of	  these	  in	  one	  
day.

·	  	  	  Need	  to	  move	  many	  
large	  TB-‐scale	  
datasets	  at	  once	  from	  
multiple	  microscope	  
computers	  to	  lab	  
workstations	  or	  
supercomputers.

·	  	  	  Need	  method	  to	  
share	  large	  datasets	  
with	  users.
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Case Study 9

National Synchrotron Light Source
II

9.1 Background

National Synchrotron Light Source II (NSLS-II) will be a new state-of-the-art, medium-energy electron
storage ring (3 billion electron-volts) at the Brookhaven National Laboratory in New York. Designed
to deliver world-leading intensity and brightness, NSLS-II will produce X-rays more than 10,000 times
brighter than the current NSLS. The superlative character and combination of capabilities will have broad
impact on a wide range of disciplines and scientific initiatives, including the National Institutes of Health’s
structural genomics initiative, DOE’s Genomics: GTL initiative, and the federal nanoscience initiative.
The first six beamlines will use a variety of techniques: submicron resolution X-ray spectroscopy (SRX)
analysis pipeline (XANES), inelastic X-ray scattering (IXS), X-ray powder diffraction (XPD) , and coher-
ent soft and hard X-ray (CSX/CHX). HXN uses a number of techniques including: X-Ray fluorescence
microscopy, differential phase contrast, tomography with self-absorption correction, image correlation
and registration, ptychography and Bragg–ptychography, nanodiffraction and XANES. To effectively use
these new capabilities, new methods are required to collect, analyze, store and visualize the data.

9.2 Collaborators

The NSLS-II is a user facility that will initially provide the community with 15 beamlines. There are two
basic types of beamlines, those that run samples that are submitted and those that support interac-
tive experiments. The beamlines that run samples queue up experiments or experiments are selected
through a process and a team of scientists are given access to one of the beamlines for 1–14 days.
These groups come from international laboratories, universities, and private industry. Their data is pro-
prietary in most cases. They can be working at a major lab with access to all of the network bandwidth
and computing that they are endowed with or they could be at a coffee shop in their university with a
laptop.

Table 9.1
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9.3 Near-term Local Science Drivers

9.3.1 Instruments and Facilities

The NSLS-II storage ring is 792 m in length1 and there will be 60 to 80 beamlines.2 NSLS-II is designed
to deliver photons with high average spectral brightness in the 2 keV to 10 keV energy range exceed-
ing 1021 ph/s/0.1%BW/mm2/mrad2. The spectral flux density should exceed 1015ph/s/0.1%BW in all
spectral ranges. This is considered cutting-edge performance and requires the storage ring to support a
very high-current electron beam of 500 mA. The ring will operate at 3 GeV, which is considered medium
range, yet the brightness and flux are what will make NSLS-II unique. The beamlines will use state of
the art area detectors capable of taking 1000 frames per second as well as correlation counters that can
resolve time to 125 ns. Motion controllers provide coordinated motion between optics from the insertion
devices to the detector with a resolution of 1 ms. The facility timing system is extended to all instrumen-
tation from the storage ring to the detector that time stamps data with 8 ns of resolution. These new
capabilities from the X-ray source, to the detectors and coordinated motion control are capabilities that
drive data rates.

9.3.2 Infrastructure

A modular hardware and software architecture is planned to provide an infrastructure that can grow
and evolve over the life of the facility. It must support the new detectors and techniques as they con-
tinue to evolve. They must also support analysis of the quality of the data and the performance of the
beamline.

9.3.3 Software Architecture

The software architecture is built as a set of tools that use standard Application Program Interfaces
(APIs). The software architecture is built taking advantage of the tools and communication protocols
that exist in the Experimental Physics and Industrial Control System (EPICS). The software architecture
supports all data handling from the detector and other instrumentation, through analysis, visualization,
and storage at each phase. There are two aspects to this software architecture, the data stores and the
processing of the data.

1https://en.wikipedia.org/wiki/National_Synchrotron_Light_Source_II#cite_note-NSLS-II_Specs-5.
2https://en.wikipedia.org/wiki/National_Synchrotron_Light_Source_II#cite_note-NY_Times_NSLS-II-6.
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Figure 9.1: Data stores for scientific use cases. Each is physically separate, and may be optimized for its intended
purpose.

Data Stores

A typical experiment involves not only the raw data from a detector, but also requires additional data
from the beamline, information from the accelerator complex, logbooks, and administrative information
(such as safety reviews or user information). To date, this information is largely kept separated and
manipulated individually. A much more effective approach would integrate these different data sources,
and make these easily accessible by data analysis codes. This new architecture is a modular design
that allows solutions to evolve independently for each of the individual aspects of the problem. This
overall approach is easily scalable and exploits existing data analysis codes in the data processing
pipeline.
The classes of data are identified along with the use cases for each, starting by defining each of the
data stores pictured in FIgure 9.1 These five classes of data storage will likely be comprised of many
physical Relational Database and Archive Data instances. To create a modular architecture, these data
stores need to have clearly defined interfaces for use by the different applications that require the ability
to add or reference the information that is contained in the stores.
Each of these data stores has different requirements for storage rates, retrieval rates, and query capa-
bility. In this model, the experiment planning and experiment log book(s) are envisioned to be relational
databases that permit data deposits either directly or through applications that allow tracking all of the
peripheral information about the experiment, notes from the project team from proposal submission
through analysis, history of extraction formats, and all data provenance. The scientific data store is
the source of the large data sets. This requires fast access, the ability to make references to the data
sets from the relational data stores, and the ability to name and access the data directly. These large
data sets should contain all of the metadata needed to understand the data set, but exclude any other
peripheral data that is available from the relational databases or the machine data. The machine data
is the storage of all dynamic conditions around the detector, the beamline and the accelerator. These
data must be available on a name, function or time basis for export to analysis codes.
The use cases for each of these data stores are illustrated in Figure 9.2. These include experiment
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Figure 9.2: Data store use cases with applications.

proposal submission, a description of data collection algorithms that are used to create the data, man-
agement of the scientific data that is created, a collection of any of the process variables at the facility,
beamline, or end station that may be used to help characterize or analyze the scientific data. On the
analysis side, users must be able to interactively search their project, sample, and environmental data.
They need to be able to create file formats (such as a specific HDF5 format), in which to extract or ref-
erence data that can be fed into an analysis processing chain. This analysis processing chain must be
able to log the provenance and store the results of the analysis.
Many elements of this architecture exist and are readily available. Computing hardware includes, disks
and servers, the size and speed of which would be determined by the scale of the system. Many of
the software elements are also available. EPICS provides the machine and beamline archive data,
and an electronic logbook on which to build. Data acquisition codes trigger detectors to write to the
scientific data store in a format best suited to the detector performance, and existing analysis codes
may be used to analyze the experiment data. Networking and data management tools may be required
for optimization to assure effective system performance.
The architecture outlined here promotes the development of whatever storage methods best meet re-
quirements, provides the ability to search through all of the experimental data collected or created
through analysis, supports the ability to create any file format to meet the input requirements for an
analysis code, and supports documentation of provenance in an electronic logbook.

Software Components

The software components support experiment control, data acquisition, interactive data analysis, and
data export. At each level of the software, Application Program Interfaces (APIs), are used to support the
incremental addition of functionality. The Experimental Physics and Industrial Control System (EPICS)
is used to provide all interfaces to the hardware and make it available over the Channel Access network
protocol. The EPICS Version 4 protocol (PVAccess) is used to provide access to complex and large
data from either the Input/Output Controller (IOC) or middle layer services that are built on top of network
available services such as the Archive Appliance that is used to archive scalar data from the beamline.
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Figure 9.3

Run headers, configuration data, and a dictionary of properties are stored in the data manager and
searchable by subsequent applications through a network service that is encapsulated by the Data
Broker API. All user applications interact with the data stores through the Data Broker API. Experiment
control has additional connection to the instrumentation through the Channel Access protocol.

Hardware

The hardware architecture is present at the beamline in the first-phase protocols. There are file servers
for the Data Manager, Science Data, and Beamline Archive Data. The science data will be migrated
from the beamline to a central storage facility after the scientist leaves the facility. The Data Manage-
ment System contains the current location of the Science Data and the Data Broker API gives the user
applications access to that data so the relocation of the data is transparent to the user. The hardware
layout for the data storage facilities is shown in Figure 9.4.
There are four IOCs: three for controlling all network-based instrumentation that includes motor con-
trollers and industrial I/O. There is an IOC that provides integration into the facility-wide timing system
as well as any low-latency I/O required. An IOC is provided for integration of area detectors with the
ability to process images in this multicore environment prior to the storage of the large data sets onto
disk. Each of these IOCs runs EPICS to integrate the I/O and provide it through the Channel Access
and PVAccess. In addition to these services and the I/O, there are the lab-wide PASS system for ex-
periment planning, the Machine Data Archive Appliance that provides all machine historical data to the
beamlines users, and a Channel Finder Service to aid the users in discovering the appropriate name
of the EPICS process variable among the over 20,000 that will exist on each beamline. The combined
software/hardware architecture is illustrated in Figure 9.5.

Experiment Control

Experiment control consists of several layers: intelligent motor controllers, integration of all control hard-
ware into the EPICS process database, sequences of commands that automate an experiment, and the
user interface to observe and control the experiment.
Many motion controllers used at NSLS-II have embedded computers. These controllers are programmed
to control the acceleration and velocity of each axis. For most of our optics, virtual axes (such as pitch,
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Figure 9.4

Figure 9.5
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(a)

(b)

Figure 9.6: (a) Data Browser Client to Strip chart Live and Archived Data. (b) 1CSStudio Screen of Optics Motion.

roll, phi, gamma, etc.) require the coordinated motion of several motors. This coordination can also be
programmed into the motion controllers.
All controls and monitors are integrated into the EPICS process database. The process database
records process at approximately 1 us per record. Processing consists of obtaining a time stamp from
the time server, converting engineering units to raw units, writing outputs, reading inputs, converting
to engineering units, checking for alarms, and notifying every client that is monitoring any field in the
record that has changed. Each signal or virtual signal is exposed through the Channel Access protocol
for read/write access to any client on the network. Writes in this environment are executed across the
network in the order of 35 ms. All control parameters and monitor signals are available to be monitored
over the Channel Access protocol and are delivered with the facility wide time stamp and the alarm
severity. Tens of thousands of monitors can be sent per second. Many clients are available to present
alarms, collect history, or present the process variables to the user.
Python scripts will be used to allow scientists full control over the beamline instrumentation. Standard
scripts will be maintained in a library that provide a more integrated experience. In the following lines
taken during a session, the motor “delta” is moved absolutely to a position and a status is returned. The
next command does an absolute scan controlling the motor, delta, over a linear space.
In [4 ]: move(delta, 12)
Out [4 ]: 1
In [5 ]: ascan(motor=‘delta’, trajectory=linspace(0,10,10))
Out[5 ]: 1
The macro ascan, also makes records into the LogBook and the MetaDataStore that allow these runs to
be found and viewed. There are three Log Viewer applications that can be used to view these entries:
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Figure 9.7
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Figure 9.8

one in command-line, one in CS-Studio and a web browser application. MetaDataStore and LogBook
are accessible through the DataBroker API. The MetaDataStore describes each run that is registered
with it. Run header information includes: Run_id, Principal Investigator (PI), start_time and end_time
time for each run (which includes multiple scan events), beamline ID, run status (in progress/complete),
event header information (ascan has standard header information as do other predefined events), data
associated with a series of events within a run (motor coordinates, image URLs, some time series data,
and any additional user requested data which can be saved as name/value pairs to search for data such
as detector or the value of a given Process Variable (PV)), as well as data analysis results. Time series
data can be accessed from Channel Archiver via a python library (which will be seamless through the
dataBroker in the future). The configuration data for the run header is currently handled using “conf” text
file that includes database authentication and user/beamline information. In the near future, this text-
based configuration schema will be replaced with a NoSQL database that holds multiple configuration
parameters (i.e., session information) for various users. This configuration database will be flexible and
searchable. DataBroker API will serve as the glue between these multiple systems. This experiment
control environment provides the scientist with a library of routines that control experiments and store
information into standard services that make the data available to the DataBroker.

Data Acquisition

The data acquisition collects frame rate data from detectors and stores the data onto disk. There is
an ever increasing number of high speed detectors. Many of these read the frames directly on to solid
state disks or memory that is part of the detector. In our data acquisition, we will integrate all of the
detectors through the areaDetector application that runs under the EPICS process database.3 It provides
a number of drivers for existing detectors and cameras. Once the frame data is read into areaDetector, it
can be processed through a number of areaDetector plugins that provide some level of simple processing
(dark frame subtraction, region of interest, etc). For all of the areaDetector plugins, there is EPICS device
support that makes all of the parameters for the filters available through hundreds of EPICS records.
This in turn makes all of the configuration available to any EPICS client to allow change, monitor, and
archiving. There is a plugin that writes the frame data over the network to disk. The frame data is also
available through device support that reads the frame data into EPICS records and makes it available to
Channel Access as a byte array. There is also a plugin that makes the frame data available to PVAccess
(EPICS V4) protocol which serves the data as a standard data multi-dimensional data type with axes
information as part of the data structure. PVAccess is able to multicast the frame data to multiple clients
at the same time. Python or Java scripts can be written that monitor these data streams and process
them in parallel while being written to disk. As rates continue to increase and the need for immediate

3It is an open-source project that is available on Git Hub.
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Figure 9.9

analysis grows, multi-core processors and large memories can be used to minimize the latency between
capturing frame data and processing it.

Data Management

Data management consists of several areas: configuration data, beamline time series data, machine
time series data, science/detector data, and run data. The frame rate data is the large data payloads from
the detectors and the storage is under consideration. The configuration and run data are metadata that
identifies the science data, including configuration, sample information, and experiment conditions, and
are stored in the metaDataStore. The beamline time series data is the subset of the 20,000 signals from
the beamline that are archived over time. The machine time series data is the subset of the one million
machine signals that are also available. Both machine and beamline time series data are archived in
standard EPICS data archiving applications. These data are kept online at the beamlines for the lifetime
of the beamline.
The science data store is not yet selected. Under consideration are HDF5 files accessible through
some file system, HADOOP, and an EPICS V4 archiver that manages NTNDArrays. The science data
will be available for analysis as early as possible as a network Process Variable. It may be first stored
on local beamline storage thus allowing dedicated resources at the beamline to be brought to bear for
immediate analysis. Once an experiment is completed, the science data will move to a central disk
storage for relatively fast access over some period of time. Finally, the science data may be moved to
tape for inexpensive long-term storage.
The metaDataStore is the primary source to locate data and a potential source for storing the metadata
from analysis. The metaDataStore keeps all configuration data, sample data, or analysis metadata to
enable queries to locate specific science data. The metaDataStore does not store the science data, just
a URI for the location of the science data. When the science data is moved from local storage, to central
storage, and then perhaps tape the metaDataStore simply changes the reference for the frame data to
the current location.
The major challenge for the management of data, is the timely retrieval of data sets. In our prelimi-
nary tests on data sets, which store all metadata with the frame, searches by run ID, configuration, or
conditions, were taking unacceptable portions of time. In a test with a 1000-frame scan that stored the
metadata in the frames, the search on energy took most of the 20 minutes required to retrieve, sum
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Figure 9.10

and plot. Our first prototype for the metaDataStore moved the metadata into a relational database. As
we tried to determine what standard metadata would be stored, it became clear that finding a standard
set of metadata was a task that would not be achievable in our time frame. We stored all metadata as
name/value pairs. We then scaled the prototype to have one-million entries with 120 properties each.
Random searches were taking 15 seconds to locate the frame data. With our goal to find, analyze and
plot data in a few seconds, we did not find this acceptable. Our latest metaDataStore now uses a NoSQL
database, and achieves this test in 10 milliseconds. As frame data is the largest consumer of storage,
it is the portion of the data that will be moved. The time series data and the metaDataStore will be
maintained on the beamline for at least five years.

Data Visualization

After a survey of the first set of beamlines built at NSLS-II was done to understand the priorities for
visualization, it was determined that support was needed for 1D line, 1D stack, 1D stack waterfall/2D
surface plot, 2D, 2D grid, and 2D flipbook. Integrating the metaDataStore to find data and MatPlotLib, a
python visualization tool has been put together to search, select, and plot data.

Data Analysis

There are many techniques and a large collection of analysis codes available in the community. As
a first step, the community was canvassed and the analysis needed for early science on the first six
project beamlines was identified. There are many codes that are targeted at the same problem. At
NSLS-II, we are developing a python environment to incrementally expand a set of analysis routines.
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Figure 9.11
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The routines are being collected, characterized, wrapped for access from python, refactored to conform
to our APIs, or rewritten to conform to our performance requirements. This project is being planned
and executed with expansion, access for experts, flexibility for the semi-expert, and the ability to wrap
analysis in a GUI for the non-expert users. VisTrails is being considered to provide the environment for
integrating and deploying these analysis modules at the analysis console. The analysis codes are taking
advantage of the services and environment for data management and data visualization. The analysis
codes are being written in a modular fashion to maximize reusability and portability to other computing
environments.

9.3.4 Process of Science

The data comes off of the detectors at each beamline through network ports. Many of the modern
detectors have 4 parallel 10 Gbps ports that transfer the local detector data to SSD storage as part of
the detector. The frame data is moved from this local disk to storage at the beamline and may be shipped
in parallel to a compute processor for analysis. Once the data is move from the SSD detector storage,
the next data set can be taken. Each beamline requires dedicated storage and immediate access to
processor farms as some partial analysis is needed with the minimum latency. Providing some partial
analysis with minimum latency is required to take full advantage of the new flux being provided and the
new detectors being used.

9.4 Near-term Remote Science Drivers

9.4.1 Instruments and Facilities

Remote institutions have a variety of equipment at their disposal. In most cases, a small cluster is a
reasonable expectation. They will likely be limited to commercial network connections. Most users are
not expected to download their data sets over the network. If they require their data, they will have
some sort of disk drives to take their data sets with them when their experiment is over. If their data
sets are too large to remove from the facility, then their network is also too small to transport the data
set in a timely fashion. It is foreseen that we will provide remote access to data stored at our facility and
access to compute servers at our facilities to perform some additional analysis, data reduction, and data
formatting. Reduced data sets in custom formats are envisioned.

9.4.2 Software Infrastructure

Users will log in to computers at the NSLS-II and will have access to the same software that was available
when they were on site.

9.4.3 Process of Science

The same tools for data analysis, data management, and data visualization will be used to provide
remote access to the data and the analysis environment to the scientists.
The workflow is as described in the three related chapters above. The retrieval and speed of analysis is
no longer as critical as it was when the user was on site, as they are not wasting beam time while they
wait for results. In this case, the analysis could be queued so that the computing resource at the facility
can be shared among users.

106



9.5 Medium-term Local Science Drivers

9.5.1 Instruments and Facilities

The current and projected NSLS-II beamlines will support a wide range of disciplines from biology to
physics with a wide range of techniques. Higher beam quality and new generations of area detectors
are increasing data rates quickly. Increasingly all disciplines are using multi-element detectors to mea-
sure and record the results of the experiment. Current state-of-the-art detectors are capable of producing
megapixel images with frame rates in the kilohertz range which results in data rates of up to 800 Mbps.
Such data rates are fully compatible with current off-the-shelf RAID storage technology, effectively al-
lowing the data to be written to a storage medium as it is produced. The challenge for NSLS-II, however
is to be able to process and analyze the data at this rate, with these volumes to allow the experimenter to
not only make the “first-cut” for decision-making during the experiment, but to retrieve data and analyze
it for publication. The solution to this should be compatible with:

• The current, and future user base of NSLS-II,
• The distributed nature of the control system and information stores,
• The large volumes of detector data, and
• A modular flexible approach to analysis.

It is recognized that the user-base of a synchrotron facility such as NSLS-II has shifted somewhat to-
wards users who are not x-ray experts. Increasingly, synchrotrons are becoming tools that are used
by scientists in multi-discipline studies with the users being the experts on the science, but not the
technique. Furthermore, the research groups accessing the facility do not focus their resources on the
necessary data analysis development nor do they have the hardware capable of performing the complex
analysis. NSLS-II therefore recognizes that the beamlines must be treated as instruments with the facil-
ity providing the necessary resources and infrastructure to provide the user with all the tools to reduce,
analyze and present their data in a format ready for publication.
The beamlines at NSLS-II will be among the highest instrumented, and controlled of any worldwide. This
has been enabled by two main factors. 1) The maturity of the EPICS tools used to control and monitor
the beamline hardware and 2) the reduced cost and therefore availability of high-performance servers
and network technology. While it is now possible to record almost the entire state of a beamline during
operation, this comes with the challenge that the data stores become much more distributed in nature.
The challenge is therefore to synchronize these data stores to allow cross-correlation of the data during
the analysis process. This also opens up the opportunity to pull data from other databases such as the
safety approval database or proposal database, and make this available to the analysis workflow.
With modern X-ray detectors capable of streaming data at over 800 Mbps management of the detector
data will be a crucial aspect of the data collection and analysis architecture. Here the challenge is
the lifecycle of the data, from the initial storage of the data at the beamline during the experiment to
the eventual long term archiving of the data. To fully cover the data lifecycle many different storage
mediums will be used and the data management solution will keep track of where the detector payload
is stored. By tracking this detector payload, the user does not need to be aware of where, or on what
medium the data resides but can request the data though a standard interface. This allows for a flexible
management plan which can both grow with the facilities needs and advantageous changes to storage
technology.
Given the breadth of analysis performed at NSLS-II, a flexible solution is needed to cater for all possible
data analysis workflows. While often the end analysis is unique to the experiment being performed, there
is a great deal of common tasks that are undertaken on the data spanning the breadth of all disciplines.
For example, most beamlines with 2D detectors wish to subtract the dark image from the detector,
perform a flat-field correction and remove cosmic rays. We therefore propose a modular approach to
data analysis with small modules performing operations on the data available to all beamline users.
In order to both manage the flow of data through the modules a workflow manager allows the user to
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construct their specific workflow. Finally a suite of visualization modules will be available to view the
data in 1D, 2D and eventually 3D.

9.5.2 Future projections

In order to maximizing the productivity of NSLS-II for beamlines which require complex data analysis
and computation it will be necessary to provide resources to users to guide their analysis to publication.
We propose a model for the future that draws a parallel to the current model of user access and support
at NSLS-II. Currently, each user experiment is assigned a duration of beamline and a “local contact,”
responsible for aiding the users in their experiment. Due to the complexity of the experiments the local
contact is increasingly involved as a collaborator on experiments and often becomes part of the exper-
imental team. We propose that a similar model be applied to data analysis and computation for both
access and collaboration.
For experiments requiring more than average computation, users can request analysis time on NSLS-
II resources during the proposal process. Here any special needs can be captured early to enable
planning for the experiment, not only from a technical aspect but also from a computational aspect.
Such a mechanism would also allow access to shared laboratory-wide resources, such as computational
clusters. Load managing of these resources also becomes possible in the same way as load managing
of resources, such as detectors from a detector pool, are currently performed today.
In order to fully aid users in their analysis and computation, we propose that a data analysis “local contact”
be assigned to experiments in the same way a technical “local contact” is today. Such a person would
reside most likely in a data analysis group within the Photon Division and would work collaboratively
with users to enable their data analysis and computation both at the time of the experiment and once
the user has returned to their home institution. For some experiments this may result in a great deal of
interaction between the data scientist and has a number of advantages. Firstly, it fully engages the data
scientist in the analysis and science being performed which provides good feedback from users to such
a group. Secondly, it allows the data scientists to become collaborators on these experiments which is
both good for the career path for these scientists and allows for active development of state-of-the-art
analysis and computation.

9.5.3 Requirements

There are several key requirements that are derived from studying the current planned beamlines.
Data Rates

• Each beamline can produce 8 MB frames up to 1 kfps, with data sets up to 1 TB per minute.
• Detectors buffer all of this data on SDD storage and does not pose a challenge.

Data Analysis
• There are many techniques used to study various samples at NSLS-II.
• Closer to the raw data, many of the algorithms used are common across beamlines.
• There are some very specialized analysis routines required as well.
• Provenance of data must be preserved to validate the scientific process.
• “Scientists would rather use someone else’s toothbrush than their analysis routines.”
• Users will want to use different, competing, evolved, higher performance, or just better codes.
• To allow access to raw and processed data, a Data Broker API is provided.
• A standard library of python processing routines is produced and supported.
• Processing routines use standard data types.
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• Results from processing can be stored back into the data management system.
• A visualization library is supported for 1D and 2D data and data sets.
• A data flow system is being developed to support the development of data analysis. VisTrails is

being evaluated as a tool to provide this.
Data Processing

• Scientists may be at the beamline and interact with the experiment control. In this case, we want
to minimize the latency required to process the data and provide information.

• Scientists may have submitted samples and interact with a scheduler and analysis report. In
this case, we want to batch process the data and provide remote analysis results and reanalysis
requests.

• There are many architectural elements being modified or developed to address this.
– Zero copy transportation of large arrays in front-end computers.
– Modified EPICS locking to use multicore front ends for array processing.
– Requests to vendors to provide parallel SFP ports to pipe data into our FPGAs.
– Multicast network protocol to send data to multiple clients.

Data Management
• 1 data set per minute, with 60 beamlines operating 20 hours per day.
• 72,000 data sets per day, over 2 M data sets in one year.
• 20,000 signals are controlled and monitored on each beamline and recorded as time series.
• A MetaDataStore service is being provided to support the tracking of data.
• A ChannelArchiver is provided to store time series data from the beamlines.
• A Science Data Store is being provided to store large frame rate data sets.

Data Storage
• Data must be kept online for some time and may be stored to tape for some time.
• In 2016 we will need 2 PB to store one year of data, by 2020 35 PB will be needed.
• There is a requirement to track data provenance and store intermediate analysis results.
• Commercial solutions exist for this scale of data.

Data Export
• Scientists need to put together frame rate, time series, and configuration data in specific formats

for existing analysis codes.
• Scientists may want to export the data life cycle—from raw data through all analysis.
• The DataBrokerAPI can be used in Python to access all data. Code must be developed to repack-

age data from different data stores into a desired export format.
Remote data access problem

• There is 1–10 Gbps link into BNL.
• Our users sit at universities, coffee shops, small offices (not on a high performance network port).
• Analysis computers are being planned at BNL.
• A user interface to the analysis codes developed and maintained at BNL is being developed.
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9.5.4 Software Infrastructure

Over the next 2–5 years, the set of analysis libraries, data management, and data visualization tools
available will expand to support new techniques as they arise.

9.5.5 Process of Science

Over the next 2–5 years, it is expected that the rate at which detectors can collect data will follow Mohr’s
Law. The rate and size of the images will double every year. The challenge throughout will be to provide
robust and near immediate analysis results as the experiments are being run.

9.6 Medium-term Remote Science Drivers

9.6.1 Instruments and Facilities

Over the next 2–5 years, the NSLS-II will grow from 12 experimental beamlines to 30–40 beamlines.
The number of scientists that will access their data will increase by a factor of 3.

9.6.2 Software Infrastructure

The tools are expected to evolve over the next 2–5 years (e.g., beyond the current fiscal year’s budget
cycle and out to 5 years) and hopefully converge to one analysis code for each function.

9.6.3 Process of Science

The process of science of the coming 2–5 years is seen to remain the same. As long as 1 Gbps (or even
10 Gbps) networks are the commercial standard, users will need to use storage and analysis resources
at the facility to handle their large data sets.

9.7 Beyond 5 years

The storage of all frame rate data for one year is estimates to be on the order of 35 PB to store all of the
raw data with zero loss compression and the results of any analysis that has been performed.
NSLS-II will need 70 PB of storage to keep 1 year of scientific data This number is based on current
techniques and detectors. The required data growth may be limited by the high cost of replacing de-
tectors (on the scale of millions of dollars). Additional beamlines are assured until the facility is fully
populated. Software continues to require authentication and authorization to find and access data. On-
line analysis capabilities need to grow to support new techniques, increase performance, and expand
export capabilities.
Network capabilities within the facility must continue to expand to support the transfer of data from the
beamlines to the central storage and analysis facility. Upgrading the network within the NSLS-II facility
from the beamlines to central storage will be required. Transferring these files to either USB drives or
to the thousands of scientists that we have at their hundreds of institutions is not feasible with current
technology.
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9.8 Network and Data Architecture

Each detector comes with sufficient network and disk architectures to store their data from the detector
to solid state disks. After the data is collected, it will be moved to local storage with capacity for 30 days
of data for the given beamline. Once the scientists leave, the data is moved from the beamline storage
to the central storage. There are 10 Gbps links to each beamline to support this data transfer. The
transfer of data does not have a latency requirement. The transfer capability must support the volume
of data taken. Once the scientists leave the facility, their data must be available from the central storage
for whatever period of time is required by the facility’s data policy. Typical data policies indicate 30 days,
90 days, or 1 year.

9.9 Data, Workflow, Middleware Tools and Services

The flux of the X-rays are allowing scientist to take clearer images at a much higher rate. New detectors
are becoming commonplace that produce an ever increasing frame size and rate, which is currently 8
MB and 1kfps. The limit of the data sets appears to be the solid state disk size that can be used to buffer
the data from the detector. These large data sets have made it impractical for scientists to move their
data from the facility either with removable media or to transfer the data via the network. As a result,
data storage and management is becoming an essential task of the facility. In addition to this, analysis
tools and workflow management must also be supported at the facility. The new volumes of data require
the development of more time efficient analysis codes. This requires a higher degree of technical skills
to implement the analysis codes.
There are two key factors that distinguish light sources from large physics data. First, they are proprietary
data sets that represent corporate or intellectual property that must not be made available to anyone
outside of the science team. Second, is that there are a very large number of scientists that use these
facilities and they live and work virtually anywhere. This means that only a very small part of the data
should ever be available and that these small number of large data sets should be accessible anywhere,
any time.

9.10 Outstanding Issues

The current belief is that all data resides at the facility. However, there is no stated data policy yet.
Other facilities have 30-, 90- or 365-day online data policies. In no case, does anyone state that they
will guarantee the data against some catastrophic failure. This results in data being stored on RAID
arrays, but not redundantly nor backed up. Is this understood and acceptable to the science community
or is it the only thing that our budgets allow? If the data must be kept under all circumstances, is there
some national facility that would provide a better solution? Does that facility provide the security that is
required by this community?
The analysis and visualization codes required for these larger data sets requires more sophisticated
software engineering. The number of scientists that are also capable of this level of software engineering
is very limited. This software has to be accessible for efficient use by a large community of scientists
that range from highly skilled programmers to those that can only interact with a user interface. This
tool set does not exist for the materials science community. Building a tool set that serves the most well
understood sector in this community has taken over 9 years and was developed for the Mx community.
All of the other techniques are less well understood and the efforts to develop some sort of standard are
just beginning. There is a huge challenge to provide tools that can take advantage of the new facilities
and detectors that have been coming online in the recent years.
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Table 9.2: The following table summarizes data needs and networking requirements for the NSLS-II.

·   NSLS II light source 

ready to accommodate 

60 beam lines at 8 hours 

per day.

·   Scientists either send a 

sample to NSLS II to be 

analyzed or a team comes 

to the beam line and is 

given some period of time 

from 8 hours to 14 days 

to perform studies on 

their samples.

·   100 KB to 1TB. ·   Data is stored at 

each beam line during 

the experiment.

·   15 beam lines in 

production that will go 

online in the next 2 

years.

·   A workflow engine is 

used to integrate analysis 

codes.

·   Up to 1 TB per minute, 

up to 8 hours per day.

·   Data sets are 

transferred to central 

storage to be available 

to the scientists after 

they leave the facility.

·   A software 

infrastructure is being 

developed to manage, 

find and access data.

·   Beam line scientist 

work with visiting 

experimenters to take 

data and perform initial 

analysis to successfully 

collect the data required 

from the sample. Ongoing 

analysis of the sample is 

done by the scientists 

with the data and analysis 

machines at the NSLS II 

facility.

·   The data sets are 800 MB 

frames that may be taken 

up to 1kfps.

·   Considering the 

variety of beam lines, 

it is expected that 

20TB/day will be 

moved from the beam 

lines to the central 

storage. Data will be 

moved from some 

subset of the 15 

operational beam lines 

and will require hours.

·   A software 

infrastructure is being 

developed to manage 

and integrate existing 

analysis and 

visualization codes.

·   Many experiments will 

evolve to perform fly 

scanning to take 

advantage of the higher 

flux and faster detectors.

·   In addition, there is 

related time series data 

and configuration data.

·   Detectors are available 

that take 8MB 2D frames 

at 1kfps with 1TB of 

storage.

·   Total of 2 PB of storage is 

anticipated in these early 

years.

·   NSLS II light source 

ready to accommodate 

60 at 20 hours per day.

·   More beam lines will 

move to fly scanning.

·   100 KB to 1TB. ·   Data is stored at 

each beam line during 

the experiment.

·   30 beam lines in 

production that will go 

online in the following 3 

years.

·   With improved 

techniques for time 

resolved experiments, 

more beam lines will use 

faster detectors to take 

data frames at the highest 

possible rates.

·   Up to 4 TB per minute, 

up to 20 hours per day.

·   Data sets are 

transferred to central 

storage to be available 

to the scientists after 

they leave the facility.

·   A software 

infrastructure will be 

evolving to improve the 

abilities to manage, find 

and access data.

·   The data sets are 1600 

MB frames that may be 

taken up to 1kfps.

·   Considering the 

variety of beam lines, 

it is expected that 

90TB/day will be 

moved from the beam 

lines to the central 

storage. The data will 

be moved from some 

larger subset of the 30 

operational beam lines 

and will require hours.

·   A software 

infrastructure will 

continue to evolve to 

better manage and 

integrate existing 

analysis and 

visualization codes.

·   A total of 35 PBs is 

anticipated to store 1 year 

of data.

·   Detectors may be tiled 

and they will certainly 

grow as SSD allows 

larger intermediate 

storage of data sets.

Near Term (0‐2 years)

·   The distribution of 

users and the 

network 

infrastructure does 

not support transfer 

of data sets to the 

user.

2‐5 years

·   The distribution of 

users and the 

network 

infrastructure does 

not support transfer 

of data sets to the 

user.

Key Science Drivers Anticipated Network Needs

Science Instruments, 

Software, and 

Facilities

Process of Science Data Set Size
LAN Transfer Time 

needed

WAN Transfer 

Time needed
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·   Perhaps faster 

disks and computers 

will develop that 

enable us to transfer 

the scientists’ data 

onto some media 

that they can take 

with them.

·   A much faster 

ubiquitous network 

would be required to 

allow scientists to 

download their data 

to whatever 

institution (or coffee 

house) may suite 

them.

5+ years

·   All 60 beam lines will 

be built out.

·   Data analysis will 

continue to be supported 

at BNL with scientists 

able to view, analyze, and 

manage their results 

remotely, using the 

storage and analysis at 

BNL.

·   Data sizes are expected 

to continue to grow as 

detectors, SDD, and 

storage technology allows.

·   Time to transfer a 

data set on the local 

network must 

continue to keep up 

with the rate at which 

good data is collected.
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Case Study 10

Reactive Molecular Dynamics
Simulations of Materials

10.1 Background

In broad areas such as physics, chemistry, and materials science, there is urgent need for perform-
ing large quantum molecular dynamics (QMD) simulations, which follow the trajectories of all atoms
while computing interatomic forces quantum mechanically from first principles. Recent advances in
first-principles-based reactive molecular dynamics (RMD) simulations using environment-dependent
reactive force fields have further extended the spatiotemporal scales of atomistic simulations to study the
intricate coupling of complex materials structures to their thermo-mechanical properties and chemical
processes far from equilibrium.
With state-of-the-art O(N) algorithms such as divide-conquer-recombine [F. Shimojo et al, J. Chem.
Phys. 140, 18A529 (’14)], where the computational cost scales linearly with the number of atoms, N,
there has been dramatic increase of the scale of RMD and QMD simulations. In 2010, scientists at the
University of Southern California (USC) performed 48-million-atom RMD simulation on 65,536 IBM Blue
Gene/P cores at the Argonne Leadership Computing Facility (ALCF), to study sulfur segregation-induced
embrittlement of nickel (Figure 10.1). This is an important problem for the design of the next-generation
nuclear reactors to address the global energy problem.
Another important energy application of combined RMD and QMD approaches is self-healing nano-

Figure 10.1: 48 million-atom RMD simulation of fracture in nanocrystalline nickel without and with amorphous sulfide
grain-boundary phases on 65,536 IBM Blue Gene/P cores at ALCF [H. Chen et al., Phys. Rev. Lett. 104, 155502
(’10)].
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Figure 10.2: (Left) RMD simulation of crack self-healing by molten silica in alumina. (Right) QMD simulation revealed
bond-purification by thermal annealing at a SiC/Al2O3 interface [K. Shimamura, et al., Phys. Rev. Lett. 111, 066103
(’13)].

material systems capable of sensing and repairing damage in harsh chemical environments and in
high-temperature/high-pressure operating conditions. Self-healing can significantly enhance the relia-
bility and lifetime of materials while reducing the cost of manufacturing, monitoring and maintenance for
high-temperature turbines, wind and solar energy, and lighting applications. An example is autonomous
self-healing of cracks in alumina (Al2O3) containing silicon carbide nanoparticles (n-SiC). Near a cracked
region, n-SiC gets oxidized in the high-temperature oxygen environment, resulting in the formation of
amorphous silica (SiO2). Silica flows into the damage zone, heals the crack, and restores the ther-
momechanical behavior of the composites. RMD simulation demonstrating self-healing (Figure 10.2)
was validated against QMD simulation. The latter also revealed a surprising role of thermal annealing to
cause bond-strengthening and bond-purification at a SiC/Al2O3 interface, accompanied by the formation
of an Al2O3 interphase with a thickness of 2–8 Å. (Figure 10.2).
In 2013, the USC group performed the largest RMD simulation involving a billion atoms on 163,840 Blue
Gene/P cores at ALCF to investigate damage caused by a shock-induced collapse of nanobubbles in
water near a silica surface (Figure 10.3). They found that the damage on the surface can be mitigated
by filling bubbles with inert gas. They also performed a 16,611-atom QMD simulation on 786,432 Blue
Gene/Q cores at ALCF (Figure 10.3), and thereby proposed a novel nano-architectual design for a
rapid, high-yield production of hydrogen gas from water using Aluminum particles to provide a renewable
energy cycle. Their simulation showed that orders-of-magnitude faster reactions with higher yields can
be achieved by alloying Aluminum particles with Lithium.
Simulations are performed on local and remote data centers. We have 200 million core-hours/year of
computing on the 786,432-core Blue Gene/Q (Mira) at ALCF under an INCITE project. After collecting
the simulation data, we perform analysis locally at USC. In the case of simulations performed on remote
data centers, they are transferred to USC through WANs. For visualization, we use dedicated computers
at our lab. We use the USC campus network (at speeds between 0.1–1 Gbps) to transfer data.

10.2 Collaborators

Collaborators:
1. Priya Vashishta, Rajiv K. Kalia, Aiichiro Nakano, Ken-ichi Nomura, University of Southern California

• Large-scale RMD and QMD simulations
2. Fuyuki Shimojo, Kumamoto University, Japan

• QMD simulation methods
3. Paul Messina, Nichols Romero, Venkat Vishwanath, Joseph Insley, Argonne National Laboratory

• Performance optimization, and real-time data visualization and analysis
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Figure 10.3: (Left) Billion-atom RMD simulation of cavitation bubble collapse in water on 163,840 IBM Blue Gene/P
cores at ALCF [A. Shekhar et al., Phys. Rev. Lett. 111, 184503 (’13)]. (Right) 16,611-atom QMD simulation of
hydrogen-gas production from water using a LiAl particle on 786,432 IBM Blue Gene/Q cores at ALCF [K. Shima-
mura et al., Nano Lett. 14, 4090 (’14)].

4. Manaschai Kunaseth, NANOTEC, Thailand
• Performance optimization

5. Aaron Knoll, University of Utah
• Visualization of large datasets

Facilities:
1. Center for High Performance Computing (HPC), University of Southern California
2. Argonne Leadership Computing Facility

• Mira (Blue Gene/Q) for production run, Tukey (AMD x86_64) for visualization and analysis,
and Cetus (Blue Gene/Q) for code development

10.3 Near-term Local Science Drivers

10.3.1 Instruments and Facilities

We use two major facilities to generate simulation data—USC-HPC and ALCF. At USC-HPC, we have
256 of dual hexcore nodes (3,072 cores) on 10 Gbps Myrinet and 88 of dual octacore (1408 cores)
nodes on 56 Gbps FDR Infiniband.

10.3.2 Software Infrastructure

We use common Linux tools, such as scp and rsync, to transfer data, and tar and gzip to archive them.
To visualize simulation data using the VisIt software,1 we use the silo format2

1https://wci.llnl.gov/simulation/computer-codes/visit.
2https://wci.llnl.gov/codes/silo/index.html.
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10.3.3 Process of Science

For simulation data produced at USC-HPC and ALCF, visualization and analysis are performed on two
visualization computers equipped with one GPU per node in our lab. Simulation data are transferred
to the visualization computers through the USC local network, post-processed, then after creating high-
quality simulation movies, they are projected to a tiled display wall by twelve projectors in our visualization
room.
Custom software converts the acquired data to HDF5 data files using the standardized NeXus data
format3 and saves to central data storage. Infrastructure based on ActiveMQ has been developed to
automatically reduce data on a number of instruments. Data reduction (automated and interactive) on
most instruments uses the Mantid toolkit.4 Data are cataloged using ICAT.5

10.4 Near-term Remote Science Drivers

10.4.1 Instruments and Facilities

We perform small-to-medium size simulations at USC-HPC first for testing, then moved on to ALCF’s
Blue Gene/Q for large-scale production runs. Initial configurations for the production runs may also be
generated using the USC cluster (e.g., 80 GB for the one-billion-atom nanobubble collapse simulation
in Figure 10.3) and transferred to ALCF via WANs.

10.4.2 Software Infrastructure

We mostly use the same set of tools as described in Section 10.3.2. We plan to use Globus6 for large
dataset transfers.

10.4.3 Process of Science

To minimize unnecessarily data transfer, we plan to use VisIt or Paraview as a remote rendering tool
from the USC-HPC cluster.

10.5 Medium-term Local Science Drivers

10.5.1 Instruments and Facilities

USC-HPC staff are currently working toward an intercampus high-speed network called the Trojan Ex-
press Network II (TEN-II), providing 100 Gbps bandwidth to transfer data between the University Park
Campus, Health Sciences Campus, and Information Sciences Institute. This network will enable rapid
data transfer between the USC data center and the visualization room, or real-time streaming of the
rendered images from the computing cluster without moving simulation data.

3www.nexusformat.org.
4www.mantidproject.org.
5www.icatproject.org.
6https://www.globus.org.
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10.5.2 Software Infrastructure

We expect more data-intensive, high-throughput simulations based on scientific workflow systems such
as Pegasus and Swift. Also, we plan to perform parallel replica dynamics (PRD) simulations to study
long-time dynamics, where thousands of simulation instances are coordinated within the scientific work-
flow (see Figure 10.4).

10.5.3 Process of Science

The PRD simulations would generate intermediate data for each simulation instance. Efficient data
management is necessary to achieve enough data exchanges with replicas to detect rare events.

10.6 Medium-term Remote Science Drivers

10.6.1 Instruments and Facilities

Once the simulation data have been stored on disk, continuous growth in the simulation data size will
make analysis and visualization almost impossible at the leadership-computing-facility-scale. Real-time
or in-situ analysis will enable us to check errors, investigate results, and visualize simulation with suffi-
cient temporal resolutions.

10.6.2 Software Infrastructure

GLEAN will be used to accelerate I/O and simulation-time data analysis based on its flexible and exten-
sible framework design.

10.6.3 Process of Science

Using Mira, we will first investigate the concept of the staging cluster, where simulation data being con-
tinuously transferred from a more powerful computing cluster.

10.7 Beyond 5 years

In-situ data analytics: The goals of RMD and QMD simulations include finding rare but interesting
events in simulation output that may represent key material processes underlying material properties of
interest, discovering common sequences of events, and discovering causality among events. Currently,
we employ data-sampling techniques to decrease the size of simulation output to make it possible to
store, transfer, and post-process the output data. In future, we envision in-situ data analysis to include
all spatiotemporal trajectories for higher quality knowledge discovery.
Parallel replica dynamics simulations: To study long-time dynamics of materials, we will use mas-
sively PRD simulations, where thousands of simulations run in parallel (Figure 10.4). In this high-
throughput computing approach, the results of these replicated simulations are analyzed and correlated,
and the results of that analysis drive the next set of replicated simulations. This would require machine-
learning approaches to automatically detect key material behavior events and provide feedback to simu-
lations run on remote supercomputers, thereby significantly increasing the network requirement.
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Figure 10.4: (a) Conventional molecular dynamics (MD) simulation has sequential time dependence. (b) parallel
replica dynamics (PRD) predicts the long-time behavior through statistical analysis of multiple parallel MD trajec-
tories. Conventional file-based (c) and new in situ (d) PRD simulations where ML represents machine-learning
tasks.

10.8 Network and Data Architecture

Streaming data through TEN-II network and ESnet, we will be able to monitor simulations and perform
analysis in real-time at USC while the simulation is running on the LCF supercomputer. Also, steering
simulations via real-time feedback to the simulation remotely would be possible.

10.9 Data, Workflow, Middleware Tools and Services

Tools examples include Globus or other data transfer tools, automated data transfer toolkits, distributed
data management tools, etc.
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Table 10.1: The following table summarizes data needs and networking requirements for molecular dynamics sim-
ulations at the University of Southern California.

·	  	  	  	  	  	  	  USC	  HPC	  and	  
Blue	  Gene/Q	  at	  
ALCF.

·	  	  	  	  	  	  	  80	  GB	  per	  
frame.

·	  	  	  	  	  	  	  VisIt	  and	  
Paraview	  for	  
visualization,	  
Globus	  for	  data	  
transfer.

·	  	  	  	  	  	  	  Current	  
maximum	  data	  size	  
is	  300	  TB	  
depending	  on	  the	  
number	  of	  frames	  
to	  be	  saved.
·	  	  	  	  1,000–10,000	  
files	  and	  1–80	  GB	  
each	  file.

·	  	  	  	  	  	  	  LCF	  and	  USC	  
HPC.

·	  	  	  	  	  	  	  80	  TB	  per	  
replica	  exchange	  
iteration.

·	  	  	  	  	  	  	  GLEAN	  for	  
simulation-‐time	  
in-‐situ	  data	  
analytics,	  Pegasus	  
and	  Swift	  for	  high-‐
throughput	  
simulation	  and	  
time	  accelerated	  
dynamics	  
simulation.

·	  	  	  	  	  	  	  80TB–800TB.

·	  	  	  	  	  	  	  1000	  files	  per	  
iteration	  and	  80	  GB	  
per	  simulation	  
instance.	  1-‐10	  
frames	  to	  be	  saved	  
per	  simulation.

·	  	  	  	  	  	  	  LCF	  and	  USC	  
HPC.

·	  	  	  	  	  	  	  Steering	  
molecular	  
dynamics	  
simulation.

5+	  years

Near	  Term	  (0-‐2	  years)
·	  	  	  	  	  	  	  Small-‐to-‐
intermediate	  size	  
simulation	  on	  the	  
USC	  HPC	  cluster	  
and	  large-‐scale	  
production	  run	  
on	  Blue	  Gene/Q	  
at	  ALCF.	  
Visualization,	  
rendering	  and	  
analysis	  on	  Tukey	  
at	  ALCF	  and	  HPC	  
USC	  cluster.

·	  	  	  	  	  	  	  The	  data	  
transfer	  rate	  on	  
USC	  campus	  is	  
1-‐10MB/s,	  
which	  gives	  
100	  GB-‐1	  
TB/day	  
transfer	  rate	  
between	  USC	  
HPC	  and	  lab	  
computers	  or	  
the	  
visualization	  
room.

·	  	  	  	  	  	  	  The	  data	  
transfer	  rate	  
between	  ALCF	  
and	  USC	  HPC	  is	  
a	  few	  MB/s.	  
100	  GB	  data	  
takes	  a	  day	  to	  
transfer.

2-‐5	  years
·	  	  	  	  	  	  	  Parallel	  
Replica	  Exchange	  
on	  Scientific	  
Workflow.	  
Simulation-‐time	  
in-‐situ	  data	  
analysis	  and	  
visualization.

·	  	  	  	  	  	  	  TEN-‐II	  
network	  
provides	  100	  
Gbps	  as	  the	  
theoretical	  
peak	  
bandwidth.	  2-‐
20	  hours	  to	  
complete	  
transferring	  80-‐
800	  TB	  data.

·	  	  	  	  	  Connecting	  
ESnet	  and	  TEN-‐
II	  networks,	  
similar	  ETA	  to	  
LAN	  transfer	  
time	  can	  be	  
achieved.

Key	  Science	  Drivers Anticipated	  Network	  Needs

Science	  
Instruments,	  
Software,	  and	  
Facilities

Process	  of	  
Science Data	  Set	  Size LAN	  Transfer	  

Time	  needed

WAN	  
Transfer	  

Time	  needed
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Case Study 11

Spallation Neutron Source and
High Flux Isotope Reactor

11.1 Background

The Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) are DOE BES Scientific
User Facilities at the Oak Ridge National Laboratory. These facilities are operated to support research
using neutrons in a variety of science areas including structural biology, crystalline materials, polymers,
magnetism and superconductivity, chemistry, and disordered materials.
Experiments are typically performed by placing a representative sample of the material of interest within
the direct neutron beam of an instrument. The neutrons interact with the sample material, and a portion of
these neutrons is scattered and detected by the instrument detector systems. These scatter patterns can
be analyzed to characterize the structure and/or the dynamic processes of a material. The instruments
are designed and optimized to statistically measure a particular range of size scales ranging from atomic,
to molecular, to macro-molecular structures.
Data acquisition collects event data showing the position of the neutron on the detector array and its time
of flight (energy), along with metadata for the sample’s environment (temperature, pressure, electric or
magnetic field, etc.) and instrument configuration (neutron choppers, motion controls, etc.). The data
are processed to produce an HDF5 data file using the NeXus data format. A single measurement is
called a “run,” and an experiment is typically composed of a number of runs. Collections of runs may be
grouped into a “reduced” data set. As reduced data sets tend to be histogram sets and thus include all
the zeros. They can be an order of magnitude larger than the raw data set.
SNS data sets tend to be larger than those produced at HFIR. For the lower range of SNS, a run data
set may be on the order of tens to hundreds of MB, and on the upper end, a run data set may be many
GB. The highest data rate SNS instruments are capable of producing data sets approaching 1 TB. An
imaging and tomography beam line is being planned which will have the potential to produce larger data
sets.
The facility’s data network is largely intra-ORNL at present. Data flow from the instruments to a central-
ized data management system and are processed either locally on SNS computers or on other ORNL
computers SNS provides computing resources and software for users to process and analyze their data.
These computing resources are available while the user is on-site conducting the experiment and remain
available for remote login afterward.
New horizons in science give us insights into more network-centric science research environments.
Researchers more commonly use multiple instruments at the same or different user facilities to shed light
on the materials problem under investigation. For example, crystallographers often perform experiments
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at the APS or other light sources prior to coming to the SNS where they perform neutron scattering
measurements to co-refine the structures using their data obtained from both techniques.
SNS is developing the ability to stream live data during an experiment, which could be streamed to high
performance computing resources to perform near real-time data analyses in combination with online
simulation and modeling. Near real-time computing during an experiment could be used for determining
structure, orienting the sample within the beam, or for controlling or sequencing more complex exper-
iments. As a recent test case, molecular dynamics simulations were carried out on EOS at the same
time phonon dispersion measurements of SrTiO3 were carried out on the HYSPEC instrument (a hybrid
spectrometer). These types of studies would mean the user is not only interested in passing around
a single 100GB data set, but also a similar sized simulation data set. Initially these studies were all
carried out at ORNL. However the computing resource could be NERSC or ALS as well.
Thus one can imagine a number of scenarios for inter-facility networking among DOE’s experimental and
computational user facilities, though establishing the new science cases to support these connectivity
scenarios is still ongoing.

11.2 Collaborators

Between the two user facilities we have roughly 1000 people who wish to access their data remotely.
They come from national and international research facilities. They have a varied computational skill set
and resources at their home institution. Some are happy with an NxClient remote login interface into
our systems, while others prefer to analyze their data on the home institution.

11.3 Near-term Local Science Drivers

11.3.1 Instruments and Facilities

SNS provides shared analysis computing resources for its users. A typical analysis computer has 32
cores and 256 GB of RAM. A computing cluster is available for processing larger data sets. The cen-
tralized data storage is a Lustre Parallel File system with 1.1 PB of data storage. A remote login infras-
tructure provides remote users access to both data and computing resources.
As part of an ORNL-wide initiative, the SNS is an active part of the Compute and Data Environment for
Science (CADES) described in the following paragraph.
ORNL hosts a number of signature facilities and projects that produce, analyze, and steward a wide
diversity of data. These include the Spallation Neutron Source (SNS), the Oak Ridge Leadership Com-
puting Facility (OLCF), and the Center for Nanophase Materials (CNMS), the Consortium for Advanced
Simulation of Light Water Reactors (CASL), the Atmospheric Radiation Measurement (ARM) archive, the
Carbon Dioxide Information Analysis Center (CDIAC) and other growing initiatives such as our work with
the Center for Medicare & Medicaid Services (CMS). In addition to these facilities and projects, ORNL
has a wide range of other research projects that are increasingly reliant on computing and data-intensive
capabilities. While each of these centers and projects has a unique mission, they share common re-
quirements and needs in computing, data processing, and management. Perhaps even more broadly,
these initiatives share common needs in computing and data-intensive capabilities that can be more
efficient and cost effective if they leverage common technologies and expertise in computing and data
science. These capabilities include data analysis, data fusion, data mining, search and discovery, visu-
alization and many others. CADES provides a new local-environment for scientific discovery enabling
scientists to free themselves from the difficulties of trying to manage, manipulate and process large data
sets in order to concentrate on extracting the scientific meaning of the theoretical, experimental, and
observational data.
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11.3.2 Software Infrastructure

Custom software converts the acquired data to HDF5 data files using the standardized NeXus data for-
mat (www.nexusformat.org) and saves to a central data storage. Infrastructure based on ActiveMQ has
been developed to automatically reduce data on a number of instruments. Data reduction (automated
and interactive) on most instruments uses the Mantid toolkit.1 Data are cataloged using ICAT.2

11.3.3 Process of Science

As data are the primary products of user facilities, data movement and data processing are core needs for
scientists and researchers once they perform their experiments and then need to analyze their data. For
SNS, the process utilizes the above describes resources and can be characterized as listed below.

• In some cases, facility users may undertake pre-experiment planning facilitated by performing com-
puter simulations in order to better anticipate experimental results. As simulation tools continue
to improve, performing these simulations may likely become a routine component to performing
experiments.

• Measuring and collecting data is a primary activity of users while at experimental user facilities—
the measurement techniques vary widely across the suite of instruments at the facility, but they
have some common steps involving data as listed below:

– Acquiring data
– Data movement, cataloging, and archiving
– Data treatment and data reduction
– Visualization of the raw and reduced data
– Batch processing of data when possible
– Fitting to models and analysis of the processed data for structure or dynamics information

11.4 Near-term Remote Science Drivers

11.4.1 Instruments and Facilities

As SNS and HFIR facility users come from across the globe, the need for collaboration tools is growing.
This ranges from tools for locating and accessing data, running computing jobs remotely, to electronic
collaboration (email, chat, Skype, remote desktop, etc.), to collaboratively working on publications to-
gether. Having the ability for researchers to leverage a feature-rich integrated resource pool would be
helpful.

11.4.2 Software Infrastructure

Users can remotely access data analysis clusters and the installed software through NxClient and trans-
fer data off-site through a variety of standard tools such as sftp, scp or download through a web portal.
For larger volumes we recently established a Globus online endpoint allowing access to SNS data.

1www.mantidproject.org
2www.icatproject.org
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11.4.3 Process of Science

Scientists will begin to look more at the portfolio of networking and computing resources available to them
to help support performing their research. Researchers may work at a number of experimental facilities
nationally and perhaps internationally, and will want to have autonomy in being able to move and locate
these data, utilize computing resources, define collaborations, and publish their results.

11.5 Medium-term Local Science Drivers

11.5.1 Instruments and Facilities

Both the SNS and HFIR facilities will continue to add instruments within the next 2 to 5 years, however
the number of instruments being added is gradually reducing with time. The commissioning of existing
instruments and these new instruments will continue at some level during this timeframe.

11.6 Medium-term Remote Science Drivers

11.6.1 Instruments and Facilities

Researchers may start to utilize what could be characterized as “Virtual Instruments,” as computing,
modeling, and simulation continues to grow within the neutron scattering community. These virtual
instruments are intended to enable virtual experiments which would enable researchers to focus on
particular aspects of their research and gain insights for performing actual experiments. These virtual
resources would need to be accessible remotely to researchers and collaborators. The simulations that
these virtual experiments facilitate could be quite large, thus bringing the same data movement and
storage issues to the neutron scattering community, as already faced by the supercomputing communi-
ties.

11.6.2 Software Infrastructure

The typical facility user will utilize multiple facilities across the globe. A 2012 user survey, including
users from 9 European photon facilities, 6 European neutron facilities, and 1 US neutron facility (SNS)
is available at http://pan-data.eu/node/99. It shows for example, that 15.4% of the SNS/HFIR users
used at least one other neutron source in Europe, and 5.8% of the SNS/HFIR users used at least one
European photon source. A study across U.S. neutron and light sources is in progress.
Additionally more extensive simulations are used to compare neutron (and other) experimental results.
As part of the Center for Accelerating Materials Modeling (CAMM) using SNS data, we have devel-
oped a prototype framework allowing the refinement of force fields in classical molecular dynamics (MD)
simulations based on quasi-elastic neutron scattering data measured on the BASIS instrument at the
SNS.
Materials science of the future will utilize data from multiple user facilities coupled with simulation results
using multiple compute resources. Our infrastructure needs to allow for efficient access (single sign-on
if possible) to all those data and resources.

11.6.3 Process of Science

In the next 2–5 years, users will expect there to be something which could be characterized as “Google
Science” available to help facilitate their research. This will probably be a cloud-computing-based envi-
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ronment in which users can utilize various social networking tools adapted to science as well as high-end
tools for facilitating publications. For this mode of working to be successful, it will be important to have
access to responsive network-enabled research tools with low-latency and high-bandwidth connectiv-
ity.

11.7 Beyond 5 years

Beyond five-years, facility users will likely benefit from laptops with significantly more capacity and per-
formance than the original instrument analysis computers that by this point would be 10+ years old. If
this is the case, users will rely more upon their own computing resources to perform tasks rather than
remote computing resources to accomplish this. This will require high-network bandwidth capacity to
move data to these computing resources they possess. This is not to say that facility-provided comput-
ing would be obsolete—far from it. Performing experiments will always require local computing capacity,
and research will continue to grow into the computing capacity at hand. It is also anticipated that the cur-
rent generation of computing-savvy researchers will take advantage of HPC resources to better prepare
for experiments by performing simulations prior to arrival for their experiments, as well as to utilize HPC
resources while on-site to help them steer their experiments and for drawing scientific inferences from
their experiment data. Following the completion of their experiment measurements, these computing-
savvy researchers could then take advantage of new high-powered modeling and simulation tools to
analyze their data.
In some regards, one could think of a neutron scattering instrument as capable of creating complex data
composed of significantly more atoms and molecules than currently computed by today’s simulations.
Thus the future holds the promise of leveraging extreme-scale computing coupled with experimentation
as these coverage scales converge.
Users will come to expect high-performance, high-reliability access to both data and computing re-
sources. They will want to work in a virtual world held together by networking and intelligent data
management tools, which blurs the need for one to keep track of where resources and data reside.
Cloud computing holds promise here, however these new capabilities have not yet been explored for
use in supporting the research of SNS and HFIR users.

11.8 Data, Workflow, Middleware Tools and Services

Tools examples include Globus or other data transfer tools, automated data transfer toolkits, distributed
data management tools, etc.
For the SNS and HFIR, emerging services such as commercial cloud computing, storage, etc. include
a number of workflow tools for helping with data movement and job management have been examined,
though discovering the best tools for the job can be a challenge for a user facility to determine by itself.
More specifically many of our users’ skill sets are outside of the high performance computing realm.
Therefore we need middleware tuned more towards a typical computer user and take care of the high-
speed networking behind the scene.
Cloud computing is not yet in mainstream planning for HFIR and SNS, however these could be promising
for facilitating research if sufficient bandwidth between these resources and the data repository can be
achieved. Cloud computing in the sense of data on the cloud and remote services like NX and the web
monitor are scratching the surface.
There is also an increasing interest in leveraging collaboration tools such as Skype, Remote Desktop,
and remote application sharing, web-based notebook tools like Evernote or Google Docs.
The high-volume data producing instruments give reason to rethink centralized data storage to also
include a more distributed data storage model with more storage and computing capacity located at the
instruments.
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11.9 Outstanding Issues

The neutron scattering science community is an international community with facilities broadly located
across the globe. This being the case, there is interest in networking not only between DOE user fa-
cilities, but also with international facilities. This desire brings with it a number of challenging technical
and policy issues; most notable is perhaps user identification and authentication. There are currently no
methods for (easily) integrating user authentication systems across these facilities—either within the US
or internationally. A challenge such as this can be a difficult obstacle for individual user facilities to ad-
dress, however successfully overcoming these challenges will empower users to work in an autonomous
way, leveraging a massive portfolio of resources.
A good place to start could be the establishment of a User Facility network (UFnet) layered on top of
ESnet specifically targeted and designed to support inter-facility data movement. UFnet could leverage
the data transfer nodes under development by ESnet to facilitate points of presence at each facility. A
software stack could then be developed specifically intended to support the data movement needs of
experimental user facility researchers.
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Table 11.1: The following table summarizes data needs and networking requirements for the SNS.

·	  	  	  Data	  reduction ·	  	  	  1	  to	  2	  TB/day ·	  	  	  1Gbps	  networking	  
utilized.

·	  	  	  1Gbps	  via	  traditional	  
network.

·	  	  	  Visualization ·	  	  	  1000	  to	  10,000	  files	  
per	  day

·	  	  	  Initiate	  10Gbps	  
networking.

·	  	  	  >10Gbps	  via	  ESnet	  
DTN.

·	  	  	  Experiments	  
performed	  on-‐site	  by	  
researchers	  at	  the	  
facility.

·	  	  	  A	  few	  data	  transfers	  
between	  ORNL	  and	  
other	  ESnet	  or	  Internet2	  
sites.

·	  	  	  Concurrent	  
simulations	  performed	  at	  
HPC	  facilities.

·	  	  	  2	  to	  4	  TB/day ·	  	  	  10Gbps	  networking	  
standard.

·	  	  	  >10Gbps	  available	  to	  
all	  users.

·	  	  	  1000	  to	  10,000	  files	  
per	  day

·	  	  	  Multiple	  10Gbps	  
lines	  supporting	  high-‐
volume	  instruments	  
individually.

·	  	  	  Data	  transfers	  
occurring	  more	  
regularly	  between	  SNS,	  
and	  x-‐ray	  sources.

·	  	  	  Data	  transfers	  with	  
Leadership	  Computing	  
Facilities.
·	  	  	  Initiate	  international	  
collaborations	  at	  1Gbps.

·	  	  	  24	  at	  first	  target	  station	  
instruments	  in	  the	  user	  
program	  (beyond	  24	  is	  
with	  second	  target	  
stations).

·	  	  	  5-‐10	  TB/day ·	  	  	  Utilize	  40	  Gbps	  or	  
higher	  between	  DOE	  
user	  facilities.

·	  	  	  Begin	  construction	  on	  
the	  second	  target	  station	  in	  
this	  timeframe,	  which	  
would	  eventually	  double	  
the	  number	  of	  instruments	  
at	  SNS.

·	  	  	  10,000+	  files	  per	  day ·	  	  	  Utilize	  10Gbps	  
between	  international	  
facilities.

·	  	  	  Upgrade	  internal	  
networking	  to	  40	  Gbps	  
or	  higher.

Near	  Term	  (0-‐2	  years)
·	  	  	  SNS	  has	  17	  instruments	  
in	  the	  user	  program.

2-‐5	  years
·	  	  	  ~18	  to	  20	  instruments	  in	  
the	  user	  program.

5+	  years

Key	  Science	  Drivers Anticipated	  Network	  Needs

Science	  
Instruments	  and	  

Facilities
Process	  of	  Science Data	  Set	  Size LAN	  Transfer	  

Time	  needed
WAN	  Transfer	  
Time	  needed
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Case Study 12

Stanford Synchrotron Radiation
Lightsource

12.1 Background

The Stanford Synchrotron Radiation Lightsource (SSRL) is a pioneering synchrotron radiation facility
known for outstanding science, technological innovation and user support. Now in its fifth decade, SSRL
is still evolving and is well-positioned to make significant contributions to scientific discovery for decades
to come.
SSRL provides extremely bright X-rays that scientists use for a wide range of research that probes
matter on the scales of atoms and molecules. Studies target advances in energy science, human health,
environmental cleanup, nanotechnology, novel materials and information technology, among others. As
one of five light sources funded by the U.S. Department of Energy Office of Science, SSRL enables
research that benefits every sector of the American economy. SSRL also provides unique educational
experiences and serves as a vital training ground for the nation’s future scientific workforce.
SSRL operates approximately 9 months each year with an extremely high reliability – delivering more
than 95% of scheduled x-ray beam time. Access to the SSRL is competitive based on peer-review.
Users disseminate their findings through talks and publications, and new highlights are featured monthly.
Experiments conducted at SSRL resulted in 11,600 scientific publications since 1974.

12.2 Collaborators

Of the approximately 1,700 scientists who annually participate in experiments at SSRL, over 30% are
first-time users, and over 40% are postdoctoral associates or graduate and undergraduate students.
Each researcher completes training to operate SSRL equipment. Students and new researchers learn
from and assist more senior researchers with taking measurements and analyzing data during their
experiments. The personal experience received during beam time benefits each participant by provid-
ing a framework and understanding of the mechanisms and difficulties that can be encountered during
research experiments.
Scientific users also have the opportunity to participate in schools and workshops which provide in-
depth, hands-on experience with specific data acquisition and analysis techniques as well as practice
with sharing research findings through talks and poster presentations. SSRL research results in approx-
imately 500 scientific papers annually, which includes about 20% that are theses prepared by students
who relied upon access to SSRL to complete their dissertations.
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With this diversity of users and the general level of experience in the science, the experimental tech-
niques and the computing, training is an important issue and we would plan to increase our ability to
create web-based video training.

12.3 Near-term Local Science Drivers

12.3.1 Instruments and Facilities

SSRL generally operates November through August, using the shutdown period for upgrades and main-
tenance projects.
The supported technique(s) (and associated beamlines) are outlined as such:

• X-ray Absorption Spectroscopy
– Biological x-ray absorption spectroscopy
– Materials / catalysis / chemistry x-ray absorption spectroscopy
– MEIS x-ray absorption spectroscopy
– X-ray absorption spectroscopy imaging
– Single crystal x-ray absorption spectroscopy
– Grazing incidence x-ray absorption spectroscopy
– Tender x-ray absorption spectroscopy
– Tender x-ray absorption spectroscopy imaging
– Photoemission spectroscopy
– X-ray absorption spectroscopy, near edge, soft energy
– Elliptic polarization, soft energy photoemission spectroscopy
– Ultra-high energy resolution photoemission spectroscopy
– Angle-resolved photoemission spectroscopy

• Imaging / Microscopy / Microprobe
– X-ray absorption spectroscopy imaging
– Tender x-ray absorption spectroscopy imaging
– X-ray microscopy (hard x-ray)
– Transmission x-ray microscopy (soft x-ray)

• Macromolecular Crystallography
– Multi wavelength anomalous diffraction (MAD) and monochromatic crystallography
– Single wavelength anomalous diffraction (SAD), limited MAD, and monochromatic crystallog-

raphy
– Microbeam macromolecular crystallography

• Scattering / Diffraction
– Biological small angle x-ray scattering (SAXS)
– Macromolecular solution x-ray scattering
– Materials small angle x-ray scattering
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– Time-resolved biological SAXS
– Fiber diffraction
– Lipid membrane diffraction
– Small-angle single crystal diffraction
– Powder diffraction
– Thin film diffraction
– X-ray scattering
– X-ray diffraction
– Coherent soft x-ray scattering

• Other Techniques
– White light station

Some of the groups at SLAC who perform experiments at SSRL beamlines have local computing re-
sources.

12.3.2 Software Infrastructure

The software infrastructure varies by beamline. The data acquisition systems are typically windows-
based. Many of the beamlines have custom data analysis software developed by the instrument scien-
tists. This software is used to format the data, provide fast feedback and to enable preliminary analysis.
Training in these tools is offered.
Transferring data to portable media such a storage device or laptop is available in the control rooms. De-
pending on the size of the files, they may be distributed as email attachments. Computing and software
infrastructure are not considered a barrier to scientific productivity.

12.3.3 Process of Science

The process of science is proposal driven, with beam time awarded to user groups. Those users might
not need to be physically at SLAC to take date due to the remote source handling capabilities at many
beam times. Once the user has the data, processing takes place, the data is analyzed and papers are
published. The tools and software used are based on beamline tools or may be passed down within a
research group. Within some disciplines, community databases are used as repositories. Examples of
these include the Protein Data Bank for solved structures.
While not a network issue, providing simple-to-use authentication and authorization procedures that
would federate across laboratories could be a gain.

12.4 Near-term Remote Science Drivers

12.4.1 Instruments and Facilities

The SLAC-based scientific groups have access to in-house computing resources.
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12.4.2 Software Infrastructure

Data is often transported to remote locations by portable media loaded at the beamlines. The recom-
mended tools at SLAC for WAN transfers for exporting the data offsite are bbcp and Globus. Other tools
are in use as well.

12.5 Medium-term Local Science Drivers

12.5.1 Instruments and Facilities

Several new beamlines will come online in the next few years. These beam lines are not data-intensive,
though.
The Stanford Research Computing Center (SRCF) will become the computing center for the Stan-
ford/SLAC joint institutes: The Stanford Institute for Materials and Energy Sciences1 (SIMES), PULSE
Institute for Ultra Fast Energy Science2 and SUNCAT Center for Interface Science and Catalysis.3

12.5.2 Software Infrastructure

As needed, the software infrastructure may incorporate additional functionality that leverages LCLS
software infrastructure or in some cases, the infrastructure developed at other laboratories. It is expected
that this will be driven by scientific needs and user requests, rather than by large scale changes in the
data rates.

12.5.3 Process of Science

Within the process of science, we expect to see a tighter coupling of the experimental work and theoreti-
cal predictions. The Stanford and SLAC joint institutes provide a local example of such integration.
High throughput characterization (HTC) is one methodology for facilitating the process of material dis-
covery and will identify new structure-property relationships to inform computational materials design.
In HiTp, “libraries” of combinatorial materials are produced across a single substrate, enabling the re-
searchers to probe the properties of a continuum of varying compositions under controlled production
and experimental conditions. The materials libraries are “characterized” at synchrotron light sources
(such as SSRL) using X-ray diffraction (XRD) techniques, systematically varying parameters such as
temperature that can affect the structural and performance parameters of the materials. HiTp requires
interplay between materials library production, the XRD characterization, and the use of sophisticated
data mining algorithms to extract unforeseen features and relationships. Developing the software tools
to manage the data, to analyze characterized materials libraries and developing simulations to predict
the properties will require significant intellectual effort across multiple domains.

1http://simes.stanford.edu
2https://www6.slac.stanford.edu/blog-tags/pulse-institute-ultrafast-energy-science
3http://suncat.slac.stanford.edu

131

http://simes.stanford.edu
https://www6.slac.stanford.edu/blog-tags/pulse-institute-ultrafast-energy-science
http://suncat.slac.stanford.edu


12.6 Medium-term Remote Science Drivers

12.6.1 Instruments and Facilities

In addition to increased sophistication of the detectors and data, it seems likely that some user groups will
increase the use of numerically intensive calculations such as density functional theory (DFT) codes and
ab-initio quantum chemistry codes such as (VASP or QuantumEspresso) either before, during or after
the data collection. Several groups are developing infrastructure that would simplify the code interfaces
to enable novice users to get started, enabling them to use the codes in progressively more sophisticated
ways. This infrastructure ultimately will enable the direct comparison of data and theory. The computing
requirements (and sometimes installation requirements) suggest that many of the codes will not be run
on local resources at scale, but will be run at large HPC centers or on cloud/grid resources.

12.6.2 Software Infrastructure

A number of interesting software infrastructure projects are taking place at ALS, APS and NSLS-II as well
as the local SLAC infrastructure developed for LCLS. For selected techniques, SLAC staff are exploring
data collaborations with other labs. Additionally, there are a number of infrastructure tools that can be
developed in common, such as extensions to HDF5. It should be stressed these collaborations are likely
to be small scale and of mutual benefit. We expect that the user community conducting experiments
across the US light sources may begin to request some commonality of tools.

12.6.3 Process of Science

See Section 12.6.1 for a discussion of the changes in the scientific process motivated by a tighter cou-
pling of theory and experiment. There are certainly some networking tool implications. The users will
have to be able to authenticate across different systems in order to access the experimental and calcu-
lated data. Individual facilities may deploy cataloging systems that will need federating.

12.7 Network and Data Architecture

SLAC has two connections to ESnet to provide redundancy. The primary ESnet connection is 100Gbps,
and the backup connection is 10Gbps. SLAC also has connectivity to Internet2 via Stanford University
(this connection is through the Stanford Research Computing Center which is located on the SLAC
campus).
SLAC does not have a specific Science DMZ, but the LCLS provides data transfer nodes for LCLS and
SSRL experiments for high-speed data transfers.

12.8 Data, Workflow, Middleware Tools and Services

To make a distinction, we are currently in a revolutionary era of personal IT as exemplified by the iPhone,
and some of the processes and societal changes that have resulted from that revolution have not man-
ifested in lab or research computing environments. Lab IT services are typically costly, based as they
are on enterprise level needs for robustness—this limits the types of applications that can be supported
or developed. There could also be an assessment of cyber security as it applies to various states of
research data. However, taking a modern look could lead to remote controlling a beam line with an app
that then returns plots immediately to the mobile device. Of course, the basic infrastructure has to built,
however we should be considering adding value and usability to that infrastructure.
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12.9 Outstanding Issues

To make a distinction, we are currently in a revolutionary era of personal IT as exemplified by the iPhone,
and some of the processes and societal changes that have resulted from that revolution have not mani-
fested in lab or research computing environments. Lab IT services are typically costly, as they are based
on enterprise-level needs for robustness—this limits the types of applications that can be supported or
developed. There could also be an assessment of cybersecurity as it applies to various states of re-
search data. However, taking a modern look could lead to remote controlling a beam line with an app
that then returns plots immediately to the mobile device. Of course, the basic infrastructure has to built,
but we should consider adding value and usability to that infrastructure.
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Table 12.1: The following table summarizes data needs and networking requirements for the SSRL.

·	  	  	  SSRL	  has	  33?	  beamlines	  
and	  delivers	  beam	  with	  
an	  uptime	  of	  95%	  during	  
the	  9	  month	  running	  
period.

·	  	  	  Proposal	  driven. ·	  	  	  File	  sizes	  vary	  from	  
KB	  to	  a	  few	  GB.

·	  	  	  Custom	  tools	  at	  the	  
beamline	  for	  data	  
acquisition,	  fast	  feedback	  
and	  user	  analysis.

·	  	  	  User	  driven	  with	  
dependencies	  on	  
techniques.

·	  	  	  Data	  sets	  have	  similar	  
variation.

·	  	  	  Data	  is	  stored	  at	  the	  local	  
beamlines	  for	  two	  weeks	  
then	  deleted.	  	  SLAC	  based	  
experimenters	  will	  move	  
the	  data	  to	  local	  resources,	  
non-‐SLAC	  users	  will	  copy	  
the	  data,	  often	  to	  portable	  
media	  and	  sometimes	  
email.

·	  	  	  Expect	  to	  see	  increased	  
use	  of	  simulation	  codes	  
and	  integration	  of	  theory	  
and	  experiment

·	  	  	  Expect	  continued	  
wide	  variation	  in	  the	  
data	  sizes	  and	  data	  
rates.

·	  	  	  Expect	  more	  
LAN	  traffic	  
between	  SSRL	  
and	  the	  
Stanford	  
Research	  
Computing	  
Center	  (located	  
on	  the	  SLAC	  
campus).

·	  	  	  Volumes	  
remain	  small	  
compared	  to	  
LCLS.

·	  	  	  Supporting	  automated	  
high	  throughput	  
characterization	  and	  other	  

·	  	  	  If	  needed,	  can	  deploy	  
the	  LCLS	  infrastructure	  
to	  handle	  large	  files	  or	  
data	  sets.

·	  	  	  Expected	  to	  
be	  easily	  
accommodated	  
by	  planned	  
10gbps	  
connection.

·	  	  Collaborating	  
institutions:	  
national	  
(NERSC),	  other	  
conventional	  
light	  sources	  in	  
US.

·	  	  	  Possible	  re-‐evaluation	  of	  
DMP	  consistent	  with	  SC	  
directives.

·	  	  	  Theory	  
groups

·	  	  	  Hubs

·	  	  	  Expect	  extensive	  
simulations	  with	  possible	  
integration	  with	  
experiments.

·	  	  Collaborating	  
sites:	  US	  and	  
international	  
lightsource	  
community.	  	  
NERSC,	  
International,	  
University	  
Resources	  
(derived	  data),	  
XSEDE	  
resources.

·	  	  	  Expect	  a	  need	  for	  
sophisticated	  on-‐the-‐fly	  
data	  mining.
·	  	  	  Will	  replace	  components	  
of	  software/hardware	  
systems	  as	  motivated	  by	  
changing	  technologies,	  
emerging	  standards	  or	  
bottlenecks.

·	  	  	  Expectation	  of	  some	  
robust	  shared	  
infrastructure	  for	  data	  
management	  and	  analysis	  
(technique)	  dependent.

Key	  Science	  Drivers Anticipated	  Network	  Needs

Science	  Instruments,	  
Software,	  and	  
Facilities

Process	  of	  Science Data	  Set	  Size LAN	  Transfer	  
Time	  needed

WAN	  Transfer	  
Time	  needed

·	  	  	  Detector	  technology	  is	  
expected	  cause	  a	  
dramatic	  increase	  in	  data	  
volume.

·	  	  	  Maximum	  size	  is	  
being	  determined	  and	  
will	  depend	  on	  detector	  
technology.

·	  	  	  Unknown	  but	  
expected	  to	  be	  
small	  relative	  
to	  LCLS.

Near	  Term	  (0-‐2	  years)
·	  	  	  Most	  data	  
remains	  at	  the	  
beamline.	  	  
Local	  transfer	  
needs	  are	  small	  
and	  covered	  by	  
existing	  
solutions.

·	  	  	  	  	  Files	  may	  
need	  to	  be	  
transferred	  
within	  two	  
weeks	  of	  data	  
collection.

2-‐5	  years
·	  	  	  	  	  Upgraded	  detectors

5+	  years
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