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a b s t r a c t

Network throughput is scaling-up to higher data rates while end-system processors are scaling-out to
multiple cores. In order to optimize high speed data transfer intomulticore end-systems, techniques such
as network adaptor offloads and performance tuning have received a great deal of attention. Furthermore,
several methods of multi-threading the network receive process have been proposed. However, thus far
attention has been focused on how to set the tuning parameters and which offloads to select for higher
performance, and little has been done to understand why the various parameter settings do (or do not)
work. In this paper, we build on previous research to track down the sources of the end-system bottleneck
for high-speed TCP flows. We define protocol processing efficiency to be the amount of system resources
(such as CPU and cache) used per unit of achieved throughput (in Gbps). The amount of various system
resources consumed are measured using low-level system event counters. In a multicore end-system,
affinitization, or core binding, is the decision regarding how the various tasks of network receive process
including interrupt, network, and application processing are assigned to the different processor cores.
We conclude that affinitization has a significant impact on protocol processing efficiency, and that the
performance bottleneck of the network receive process changes significantlywith different affinitization.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to a number of physical constraints, processor cores have
hit a clock speed ‘‘wall’’. CPU clock frequencies are not expected to
increase. On the other hand, the data rates in optical fiber networks
have continued to increase,with the physical realities of scattering,
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absorption and dispersion being ameliorated by better optics and
precision equipment [1]. Despite these advances at the physical
layer, we are still limitedwith the capability of the system software
for protocol processing. As a result, efficient protocol processing
and adequate system level tuning are necessary to bring higher
network throughput to the application layer.

TCP is a reliable, connection-oriented protocol which guaran-
tees in-order delivery of data from a sender to a receiver, and in
doing so, pushes the bulk of the protocol processing to the end-
system. There is a certain amount of sophistication required to
implement the functionalities of the TCP protocol, which are all
instrumented in the end-system since it is an end-to-end proto-
col. As a result, most of the efficiencies that improve upon current
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TCP implementations fall into two categories: first, there are of-
floads which attempt to push TCP functions at (or along with) the
lower layers of the protocol stack (usually hardware, firmware, or
drivers) in order to achieve greater efficiency at the transport layer.
Second, there are tuning parameters, which placemore sophistica-
tion at the upper layers (software, systems, and systems manage-
ment).

Within the category of tuning parameters, this work focuses on
affinity. Affinity (or core binding) is fundamentally the decision re-
garding which resources to use onwhich processor in a networked
multiprocessor system. The New API for networks (NAPI) in the
Linux network receive process allows the NIC to operate in two
different contexts. First, there is the interrupt context (usually im-
plemented with coalescing), in which the Network Interface Con-
troller (NIC) interrupts the processor once it has received a certain
number of packets. Then, the NIC transmits the packets to the pro-
cessor via Direct Memory Access (DMA), and the NIC driver and
the operating system (OS) kernel continue the protocol processing
until the data is ready for the application [2–4]. Second, there is
polling,where the kernel polls theNIC to see if there is any network
data to receive. If such data exists, the kernel processes the data in
accordance with the network and transport layer protocols in or-
der to deliver the data to the Application through the sockets API.

In either case, there are two types of affinity: (1) Flow
affinity, which determines which core will be interrupted to
process the network flow, and (2) Application affinity, which
determines the core that will execute the application process that
receives the network data. Flow affinity is set by modifying the
hexadecimal core descriptor in /proc/irq/<irq#>/smp_affinity,
while Application affinity can be set using taskset or similar tools.
Thus, in a 12-core end-system, there are 144possible combinations
of Flow and Application affinity.

In this paper, we extend our previous work [5,6] with de-
tailed experimentation to stress-test each affinitization combina-
tion with a single, high-speed TCP flow. We perform end-system
introspection, using tools such as Oprofile to understand the im-
pact that the choice of affinity has on the receive-system efficiency.
We conclude that there are three distinct affinitization perfor-
mance scenarios, and that the performance bottleneck varies dras-
tically within these scenarios. First, there is the scenario where the
protocol processing and the application process are on the same
core, which causes the processing capabilities of the single core
to become the bottleneck. Second, there is the scenario where the
flow receiving process and the application receiving the data are
placed on different cores within the same socket. This configura-
tion does not experience a performance bottleneck, but results in
very high memory controller bandwidth utilization. Third, when
the flow receiving process and the receiving application process
are placed on different sockets (and thus, different cores), the bot-
tleneck is most likely inter-socket communication.

The remaining part of the paper is organized as follows. In the
next section,wediscuss and summarize our prior research and give
the motivation of this study. In Section 3, we describe the related
work. In Section 4, we describe the experimental setup used to
conduct this study. We discuss the results in Section 5. Finally, in
Section 6, we give the conclusions and outline the future work.

2. Motivation

In a previous study, we conducted research into the effect
of affinity on the end-system bottleneck [5], and concluded
that affinitization has a significant impact on the end-to-end
performance of high-speed flows. However, the study did not
identify the precise location of the end-system bottleneck for the
different affinitization scenarios and hence a clear understanding
of why different affinitization leads to significantly different

throughput performance. The goal of this research is to identify
the location of the end-system bottleneck in these different
affinitization scenarios, and evaluate whether or not these issues
have been resolved in newer implementations of the Linux kernel
(previous work was carried out on a Linux 2.6 kernel).

There are many valid arguments made in favor of the use of
various NIC offloads [7]. NIC manufacturers typically offer many
suggestions on how to tune the system in order to get the most
out of their high-performance hardware. A valuable resource for
Linux tuning parameters, obtained from careful experimentation
on ESnet’s 100 Gbps testbed, is available from [8]. A number of
reports provide details of the experiments that have led to their
tuning suggestions. However, there is a significant gap in the
understanding for these tuning suggestions and offloads.

In this paper, our methods focus on analyzing the parallelism
of protocol processing within the end-system. We endeavor
to demonstrate the variability of protocol processing efficiency
depending on the spatial placement of protocol processing tasks.
In this experimental study, we employ iperf3 [9] to generate a
stress test which consists of pushing the network I/O limit of the
end-system using a single, very high-speed TCP flow. This is not
a practical scenario; an application such as GridFTP [10] delivers
faster, more predictable performance by using multiple flows,
and such a tool should be carefully leveraged in practice when
moving large amounts of data across long distances. However, it is
important to understand the limitations of data transmission in the
end-system, which can best be accomplished using a single flow.

3. Related work

There have been several studies that have evaluated the
performance of network I/O inmulticore systems [11–14]. Amajor
improvement which is enabled by default in almost all the current
kernels is NAPI [15,3]. NAPI is designed to solve the receive livelock
problem [14] where most of the CPU cycles are spent in interrupt
processing. When the kernel enters a livelock state it spends most
of the available cycles in hard and soft interrupt contexts, and
consequently, is unable to performprotocol processing of anymore
incoming data. As a result of the interrupt queues overflowing,
packets would eventually be dropped during protocol processing.
This would trigger TCP congestion avoidance, but the problem
would soon repeat itself. ANAPI-enabled kernel switches to polling
mode at high rates to save CPU cycles instead of operating in a
purely interrupt-driven mode. Related studies that characterize
packet loss and the resulting performance degradation over
10 Gbps Wide-Area Network (WAN) include [4,16,17]. The study
in [18] focuses more on the architectural sources of latency rather
than throughput of intra-datacenter links.

Another method of improving the adverse effects of the end-
system bottleneck involves re-thinking the hardware architecture
of the end-system altogether. NICs optimized for specific transport
protocols have been proposed along these lines [19]. End-system
architectural reorganization has also been proposed in [20].
Unfortunately, too few of these changes have found their way into
the type of commodity end-systems that have been deployed for
the purposes of these tests.

3.1. Protocol processing parallelism

Since end-systemprocessor architectures have been scaling out
to multiple cores, rather than up in clock speed, systems designers
have faced unique challenges in exploiting this parallelism for
network-related processing. There have been several related, but
essentially discrete methods to this end.
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Receive-side scaling (RSS) is a NIC driver technology which al-
lows multiqueue-enabled NICs to take advantage of the multipro-
cessing capabilities of an multicore end-system. Specifically, it al-
lows the NIC driver to schedule the interrupt service routine (ISR)
on a specific core [21]. Thiswill ensure that the corewhich received
the data is the same core that processes the interrupt. This effec-
tively binds flow and interrupts affinity on most modern operat-
ing systems. NICs may implement RSS-compatibility in hardware
or the driver. Receive Packet Steering (RPS) [22] is implemented
in host kernel. It allows for the selection of the CPU core that will
perform protocol processing for an incoming set of packets on a re-
ceiving end-system. Receive Flow Steering (RFS) [23] is extension
of RPS which adds another layer of control aimed at ensuring that
flow and application processing occur on the same logical core.

As commodity multicore systems continue to scale out to more
multiple cores, the resource access time between cores is no
longer uniform, due to the fact that core-to-core interconnects
could no longer be implemented practically supporting uniform
propagation speeds. Originally, this affected access to memory
most drastically, hence, such systems were referred to as Non-
UniformMemory Access (NUMA) [24]. However, with today’s high
speed I/O and network devices rivaling memory throughput, this
non-uniformity affects network and I/O data movement as well.

Common wisdom is to select cores that share the same lowest
cache structure1 when doing network processing [25,12]. For
example, when a given core (e.g. core A) is selected to do
the protocol/interrupt processing, the core that shares the L2
cache with core A should execute the corresponding user-level
application. Doing sowill lead to fewer context switches, improved
cache performance, and ultimately higher overall throughput.

The Linux irqbalance daemon does a round-robin scheduling to
distribute interrupt processing load among cores. However, it has
adverse effects as shown by [26,27]. We require a more informed
approach and we need control over selecting cores for interrupt
processing. In our experiments we disable the irqbalance daemon.

Pause frames [28] allow Ethernet to implement its own link-
layer flow-control to avoid triggering TCP flow or congestion
control, thus avoiding a multiplicative decrease in window size
when only temporary buffering at the router or switch is necessary.
In order to do this, Ethernet devices which support pause frames
use a closed-loop process in each link in which the sending device
ismade aware of the need to buffer the transmission of frames until
the receiver is able to process them.

Jumbo Frames are Ethernet frames that are larger than the
original IEEE standard 1500-byte Maximum Transmission Unit
(MTU). In most cases, starting with Gigabit Ethernet, frame sizes
canbeup to 9000bytes. This allows for better protocol efficiency by
increasing the ratio of payload to header size for a frame. Although
Ethernet speeds have now increased to 40 and 100 Gbps, this
standard 9000-byte frame size has remained the same [29]. The
reason for this is the various segmentation offloads. Large/Generic
Segment Offload (LSO/GSO) and Large/Generic Receive Offload
(LRO/GRO) work in conjunction with Ethernet implementations in
contemporary routers and switches to send and receive very large
frames in a single TCP flow, for which the only limiting factor is the
negotiation of transfer rates and error rates.

3.2. Data movement techniques

Although this research is not directly concerned with the prac-
tice of moving large amounts of data across long distances, there

1 In this document we consider the L1 cache to be at a lower level (closer to the
core) than the L2 cache, L2 lower than L3, etc.

have been several implementations of effective end-system ap-
plications which have helped leverage TCP efficiently [10,30–32].
The general idea behind these sophisticated applications is to use
TCP striping, splitting transfers at the application layer into mul-
tiple TCP flows, and assigning the processing and reassembly of
those flows to multiple processors [33–35]. Most of these appli-
cations are also capable of leveraging alternative transport-layer
protocols based on UDP, such as RBUDP [36] and UDT [37].

There have long been protocols designed for moving large
amounts of data quickly and reliablywithin closednetworks, either
within datacenters, or between datacenters. Lately, such protocols
have focused on moving data directly from the memory of one
system into the memory of another. One contemporary example
is Remote Direct Memory Access (RDMA) [38] and its original
physical layer, InfiniBand [39]. Typically, due to the addressing and
routing requirements of these protocols, they require well-curated
networks and have often been relegated to intra-datacenter traffic.

4. Experimental setup

We have employed two servers that are connected back-to-
back with a Round-Trip Time (RTT) of less than 1 ms. In our
previous experimental study [5] we had used the ESnet Testbed’s
95 ms RTT fiber loop. While loop testing is important to analyze
end-to-end TCP performance over long distances, our goal here
was to place stress on, and analyze, the performance efficiency of
receiver end-system.

Both of the systems in these experiments were running
Fedora Core 20 with the 3.13 kernel, as opposed to our previous
experiments, which used CentOS6 running a 2.6 kernel. The use of
one of the latest Linux kernels assures that the latest advancements
in kernel networking design are employed in the end-systems.

The benchmark application used to generate the TCP flows was
iperf3. Again, to ensure that the stress was placed on the end-
system, the transfers were performed in zero-copy mode, which
utilizes the TCP sendfile system call to avoid unnecessary copies
into and out of memory on the sending system.

The systems under test were modeled after prototypes for
ESnet Data Transfer Nodes (DTNs). The goal of these systems is
to serve as an intermediary to transfer large amounts of data
from high-performance computers (HPCs) to the consuming end-
systems [40]. In practice, theymust be able to take in large amounts
of data as quickly as possible through InfiniBandhost-bus adaptors,
transfer the data to local disks or large amounts of local memory,
and then serve the data over high-speed (100Gbps)WAN to similar
receiving systems. They make use of PCI-Express Generation 3
connected to Intel Sandy Bridge processors. There are two hexa-
core processors per end-system.2 Due to the design of Sandy Bridge
processors, each socket is directly connected to its ownPCI-Express
bus, meaning that certain PCI-Express slots are directly physically
linked to a single socket. This limitation is overcome with the
addition of low-level inter-socket communication provided by the
Quick Path Interconnect (QPI). This architecture is shown in Fig. 1.

The testbed used was the ESnet 100 Gbps testbed [41], which
is host to a variety of commodity hardware based end-systems
connected to a dedicated transcontinental 100 Gbps network. The
testbed is open to any researcher, and provides the added benefit
of yielding repeatable results, since the entire testbed is reservable.
This guarantees that there is no competing traffic. For the purposes
of these experiments, it allowed us to ensure that the bottleneck
was in the end-systems, and not the network.

2 Herein, these six-core packages will be referred to as ‘‘sockets’’ and the
individual multi-instructionmulti-data (MIMD) cores will be referred to as ‘‘cores’’.
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Fig. 1. Block diagram of the end-system I/O architecture.

The Linux performance profiler used was Oprofile. Oprofile
is a system profiler for Linux which enables lightweight, but
highly introspectivemonitoring of system hardware counters [42].
Oprofile’s new ocount and operf tools were used to monitor
counters of various events on the receiving system. Oprofile’s low
overhead and ability to do detailed Linux kernel introspection
proved critical in these experiments, due to the need to monitor
a possibly oversubscribed receiver. The overhead of operf was
able to be effectively measured through the introspection, and
it was found that this overhead was always at least one order
of magnitude less than the counter results from the monitored
processes. Oprofile was chosen over Intel’s Performance Counter
Monitor (PCM) for these experiments due to the number of
counters available and the introspection capability. However, PCM
is capable of reporting power consumption, which could be useful
in future tests.

The following are the modified receiving system parameters
used in the experiments:

• Flow affinity: Cores 0 through 11
• Application affinity: Cores 0 through 11
• Total number of tests: 12 × 12 = 144.

In order to analyze both the performance and overall perfor-
mance efficiency of the transfers in the different affinitization sce-
narios, wemeasured the throughput, the instructions retired (both
system-wide and by the kernel) and user processes, the last level
cache references, the L2 cache accesses, the memory transactions
retired, and the off-core requests. In order for anyOprofile compar-
isons to be meaningful, the total instructions retired by the pro-
cessor core needs to be counted [42]. The remaining counter re-
sults can be considered subsets of the instructions retired. We are
particularly interested in the memory hierarchy for these experi-
ments, because memory access allows us to at least infer how data
is being moved around through the processor and which links are
used. We also focused on the memory controller as a possible bot-
tleneck, and we found the count of cache transactions at layers 2
and 3 helpful for this, as well as the number of primary memory
transactions. (Note that, theoretically, primary memory transac-
tions need only occur when the last level cache is either filled or
missed.) Offcore requests were also monitored, but did not appear
to pick up the critical low-level PCI data being transmitted between
the sockets on theQPI. Unfortunately, those counters havenot been
made available by our BIOS manufacturer.

Table 1
List of system parameters.

Parameter Value

RTT <1 ms
Router ALU S7750 100 Gbps
Motherboard PCI Gen3
Processors 2 hexa-core Intel Sandy Bridge
Processor Model Intel Xeon E5-2667
On-Chip QPI 8 GT/s
NIC Mellanox ConnectX-3 EN
NIC Speed 40 Gbps
Operating System Fedora Core 20 Kernel 3.13
irqbalance Disabled
TCP Implementation HTCP
Hardware Counter Monitor Oprofile 0.9.9
Test Application iperf3 3.0.2

4.1. List of system parameters

A summary of the experimental environment is listed in Table 1.
The sending and receiving end systems were identical.

4.2. Experimental approach

Before each experimental run of 144 tests, a script would
recheck a variety of system network settings and tuning parame-
ters, to ensure that subsequent runs of the experimentwere consis-
tent. The system was configured using ESnet’s tuning recommen-
dations for the highest possible TCP performance. Preliminary tests
were conducted to ensure that no anomalies were causing vari-
able bandwidth results. The sending system was set to an optimal
affinity configuration and its affinity settingswere not changed. An
iperf3 server was started on the sender and left running. Then, on
the receiver, a nested for-loop shell script modified the settings in
/proc/irq/<irq# of all rx queues>/smp_affinity such that all the re-
ceive queues were sent to the same core. The inner for loop would
run operf while conducting an iperf3 reverse TCP zero-copy test,
binding the receiver to a given core, and then report the results.
In this manner, all combinations of Flow and Application affinity
were tested. The experiment was run several times to ensure con-
sistency.

5. Results

Both our current and previous work [5] concluded that there
exists three different performance categories, corresponding to
the following affinitization scenarios: (1) Same Socket Same Core
(i.e., both Flow and Application affinitized to the same core), which
reaches a throughput of around 20 Gbps; (2) Different Sockets
(thus Different Cores) which reaches a throughput of around
28 Gbps; and (3) Same Socket Different Cores, which reaches
a throughput of around 39 Gbps. While changing the OS (from
CentOS running a 2.6 kernel to Fedora running a 3.13 kernel) and
updating the NIC driver improved the overall performance, the
relative performance for the three affinitization settings remained
the same.

Our previous work showed that there was a correlation
between low throughput and cache misses over-subscribed
receiver at the system level. This work picks up at that point, using
ocount to monitor the hardware counters at the system level and
operf for kernel introspection, to closely examine the source of the
bottleneck in the receiver.
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Fig. 2. The throughput results of all 144 tests arranged in amatrix by affinity choice.
The empty circles represent the line rate of the NICs (40 Gbps). The size of the filled-
in circles corresponds to the achieved throughput.

5.1. Interpretation of results

In order to convey the results of the 144 tests effectively, we
elected to create a matrix as seen in Fig. 2. The Application affinity
lies on the y-axis, while the Flow affinity lies along the x-axis. The
numbers 0 through 11 on both axes represent the physical cores,
as they appear to the operating system. Therefore, cores 0 through
5 lie on socket 0, and cores 6 through 11 lie on socket 1. As amatrix,
the chart has two important properties:

(1) The diagonal that appears in Fig. 2 represents the case where
the Application and the Flow are affinitized to the same core.

(2) The chart may be viewed in quadrants, where each quadrant
represents the four possible combinations of affinity to the two
sockets. In other words, all of the points where the Application
affinity core is greater than 5 but the Flow affinity core is less
than 6 represent the case where the Application is affinitized
to socket 1 and the Flow is affinitized to socket 0, etc.

5.2. Flow and application processing efficiency

In the following figures we introduce Oprofile hardware
counter results. When interpreting these results, it is important
to note that hardware counters, on their own, convey little
information. For example, one could simply look at the total
number of Instructions Retired during the iperf3 transfer, but this
would not take into account the amount of data that was actually
transferred. The goal here is to view the efficiency, so the number
of instructions retired has been divided by the throughput of the
transfer (in Gbps). This allows normalization of the results because
the length of each test was identical.

Fig. 3 shows the number of instructions retired per gigabyte
per second of data transfer. The diagonal in this figure shows the
processing inefficiency when both the Flow and Application are
affinitized to the same core. In this case, not only is the throughput
poor, as seen in Fig. 2, but the processing efficiency is also much
worse than the other cases. The case where the Flow is affinitized
to socket 0 but the Application is affinitized to socket 1 shows
that more instructions are required to move data from socket 0 to
socket 1.

5.3. Impact of the memory hierarchy

With the exception of the diagonal case mentioned above
(where the Application and Flowwere affinitized to the same core),
user copies (copy_user_generic_string) dominated the resource

Fig. 3. The processing efficiency of the 144 tests; larger circles represent poorer
efficiency.

Fig. 4. The fraction of instructions retired/throughput dedicated to Level 2 cache
transactions (as measured by counter l2_trans) for all 144 tests.

consumption in the end system. From a system-wide perspective,
this was demonstrated by a large percentage of instructions that
were dedicated to accessing the memory hierarchy, as shown in
Figs. 4–6. It should be noted that the titles of these figures have
been abbreviated. Again, the raw counter output has littlemeaning
here, so the counter data has been divided by the Instructions
Retired/Throughput (Fig. 3).

In the cases where the Application and Flow are affinitized to
different cores, but are on the same sockets, memory hierarchy
transactions appear to dominate the total instructions retired.
However, these transfers were so close to line rate that the
memory hierarchy was most likely not an actual bottleneck.
Preliminary investigation shows that for the cases where the Flow
and Application affinity are on different sockets, the bottleneck
is possibly due to LOCK prefixes as the consuming core waits for
coherency.

However, in the cases where the Application and Flow were
affinitized to different sockets, a notably smaller fraction of in-
structions retired are dedicated tomemory hierarchy transactions,
despite the fact that user copies continue to dominate CPU utiliza-
tion. Many different counters have been monitored and analyzed
in an attempt to find the bottleneck in this case, including hard-
ware interrupts and cycles due to LOCK prefixes, but none showed
any correlation to this affinitization scenario.
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Fig. 5. The fraction of instructions retired/throughput dedicated to Last level cache
transactions (as measured by counter LLC_TRANS) for all 144 tests.

Fig. 6. The fraction of instructions retired/throughput dedicated to memory
transactions (as measured by counter mem_trans_retired) for all 144 tests.

5.4. The NIC driver CPU utilization bottleneck

Interestingly, in the diagonal case, transactions involving the
memory hierarchy represent a relatively small fraction of the
overall instructions retired. In these cases, introspection shows us
that the NIC driver (mlx4_en) is the primary consumer of system
resources. The exact source of the bottleneck in this case will be
investigated in the future using driver introspection.

6. Conclusion and future work

One of themost important results of the clock speedwall is that
the line between intra-system and inter-system communication
is rapidly blurring. For one processor core to communicate with
another, data must traverse an intra-system (on-chip) network.
For large-scale data replication and coherency, data must traverse
a WAN. How are these networks meaningfully different? WAN
data transfer performance continues to become less of a limiting
factor, and networks are becoming more reliable and more
easily reconfigurable. At the same time, intra-system networks
are becoming more complex (due to scale-out systems and
virtualization), and perhaps less reliable (as energy conservation
occasionally demands that parts of a chip could be slowed down, or
turned off altogether). When discussing affinitization, it becomes
obvious that despite these changes, distance and locality still
matter, whether the network is ‘‘large’’ or ‘‘small’’. In the future,
the most efficient solution may be not only to integrate a NIC onto

the processor die [20], but perhaps even integrate the functionality
with existing I/O structures, such as theNorth Bridge. However, the
feasibility of doing so may be years away.

More tangibly, this research has concluded that moving more
components of a system onto a chip (in this case, the PCI north
bridge) needs to be done carefully, or it could result in sub-
optimal performance across sockets. This provides an important
backdrop upon which to perform end-system-centric throughput
and latency tests, with attention to the fact that architectural
latency sources for end-to-end TCP flows could vary drastically on
high-throughput, high-performance hardware.

In the meantime, other NICs and other NIC drivers are being
tested in similar ways to see if results are similar, and if
generalizations can be made. The relatively recent advancement
in NIC drivers that automatically switches between interrupt
coalescing and polling is also being studied. In addition, results for
practical, multi-stream TCP, and UDT GridFTP transfers are being
examined along these lines. A future goal should be to implement
a lightweightmiddleware tool that could optimize affinitization on
a larger scale, extending the work that has been carried out on the
Cache Aware Affinitization Daemon [25].
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