
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Improving network performance on multicore systems: Impact of
core affinities on high throughput flows
Nathan Hanford a,∗, Vishal Ahuja a, Matthew Farrens a, Dipak Ghosal a, Mehmet Balman b,
Eric Pouyoul b, Brian Tierney b

a Department of Computer Science, University of California, Davis, CA, United States
b Energy Sciences Network, Lawrence Berkeley National Laboratory, Berkeley, CA, United States

h i g h l i g h t s

• Affinity, or core binding, maps processes to cores in a multicore system.
• We characterized the effect of different receiving flow and application affinities.
• We used OProfile as an introspection tool to examine software bottlenecks.
• The location of the end-system bottleneck was dependent on the choice of affinity.
• There are multiple sources of end-system bottlenecks on commodity hardware.

a r t i c l e i n f o

Article history:
Received 20 February 2015
Received in revised form
15 August 2015
Accepted 11 September 2015
Available online xxxx

Keywords:
Networks
End-system bottleneck
Traffic shaping
GridFTP
Flow control
Congestion avoidance

a b s t r a c t

Network throughput is scaling-up to higher data rates while end-system processors are scaling-out to
multiple cores. In order to optimize high speed data transfer intomulticore end-systems, techniques such
as network adaptor offloads and performance tuning have received a great deal of attention. Furthermore,
several methods of multi-threading the network receive process have been proposed. However, thus far
attention has been focused on how to set the tuning parameters and which offloads to select for higher
performance, and little has been done to understand why the various parameter settings do (or do not)
work. In this paper, we build on previous research to track down the sources of the end-system bottleneck
for high-speed TCP flows. We define protocol processing efficiency to be the amount of system resources
(such as CPU and cache) used per unit of achieved throughput (in Gbps). The amount of various system
resources consumed are measured using low-level system event counters. In a multicore end-system,
affinitization, or core binding, is the decision regarding how the various tasks of network receive process
including interrupt, network, and application processing are assigned to the different processor cores.
We conclude that affinitization has a significant impact on protocol processing efficiency, and that the
performance bottleneck of the network receive process changes significantlywith different affinitization.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to a number of physical constraints, processor cores have
hit a clock speed ‘‘wall’’. CPU clock frequencies are not expected to
increase. On the other hand, the data rates in optical fiber networks
have continued to increase,with the physical realities of scattering,

∗ Corresponding author.
E-mail addresses: nhanford@ucdavis.edu (N. Hanford), vahuja@ucdavis.edu

(V. Ahuja), mkfarrens@ucdavis.edu (M. Farrens), dghosal@ucdavis.edu (D. Ghosal),
mbalman@lbl.gov (M. Balman), lomax@es.net (E. Pouyoul), bltierney@es.net
(B. Tierney).

absorption and dispersion being ameliorated by better optics and
precision equipment [1]. Despite these advances at the physical
layer, we are still limitedwith the capability of the system software
for protocol processing. As a result, efficient protocol processing
and adequate system level tuning are necessary to bring higher
network throughput to the application layer.

TCP is a reliable, connection-oriented protocol which guaran-
tees in-order delivery of data from a sender to a receiver, and in
doing so, pushes the bulk of the protocol processing to the end-
system. There is a certain amount of sophistication required to
implement the functionalities of the TCP protocol, which are all
instrumented in the end-system since it is an end-to-end proto-
col. As a result, most of the efficiencies that improve upon current

http://dx.doi.org/10.1016/j.future.2015.09.012
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.09.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:nhanford@ucdavis.edu
mailto:vahuja@ucdavis.edu
mailto:mkfarrens@ucdavis.edu
mailto:dghosal@ucdavis.edu
mailto:mbalman@lbl.gov
mailto:lomax@es.net
mailto:bltierney@es.net
http://dx.doi.org/10.1016/j.future.2015.09.012

2 N. Hanford et al. / Future Generation Computer Systems () –

TCP implementations fall into two categories: first, there are of-
floads which attempt to push TCP functions at (or along with) the
lower layers of the protocol stack (usually hardware, firmware, or
drivers) in order to achieve greater efficiency at the transport layer.
Second, there are tuning parameters, which placemore sophistica-
tion at the upper layers (software, systems, and systems manage-
ment).

Within the category of tuning parameters, this work focuses on
affinity. Affinity (or core binding) is fundamentally the decision re-
garding which resources to use onwhich processor in a networked
multiprocessor system. The New API for networks (NAPI) in the
Linux network receive process allows the NIC to operate in two
different contexts. First, there is the interrupt context (usually im-
plemented with coalescing), in which the Network Interface Con-
troller (NIC) interrupts the processor once it has received a certain
number of packets. Then, the NIC transmits the packets to the pro-
cessor via Direct Memory Access (DMA), and the NIC driver and
the operating system (OS) kernel continue the protocol processing
until the data is ready for the application [2–4]. Second, there is
polling,where the kernel polls theNIC to see if there is any network
data to receive. If such data exists, the kernel processes the data in
accordance with the network and transport layer protocols in or-
der to deliver the data to the Application through the sockets API.

In either case, there are two types of affinity: (1) Flow
affinity, which determines which core will be interrupted to
process the network flow, and (2) Application affinity, which
determines the core that will execute the application process that
receives the network data. Flow affinity is set by modifying the
hexadecimal core descriptor in /proc/irq/<irq#>/smp_affinity,
while Application affinity can be set using taskset or similar tools.
Thus, in a 12-core end-system, there are 144possible combinations
of Flow and Application affinity.

In this paper, we extend our previous work [5,6] with de-
tailed experimentation to stress-test each affinitization combina-
tion with a single, high-speed TCP flow. We perform end-system
introspection, using tools such as Oprofile to understand the im-
pact that the choice of affinity has on the receive-system efficiency.
We conclude that there are three distinct affinitization perfor-
mance scenarios, and that the performance bottleneck varies dras-
tically within these scenarios. First, there is the scenario where the
protocol processing and the application process are on the same
core, which causes the processing capabilities of the single core
to become the bottleneck. Second, there is the scenario where the
flow receiving process and the application receiving the data are
placed on different cores within the same socket. This configura-
tion does not experience a performance bottleneck, but results in
very high memory controller bandwidth utilization. Third, when
the flow receiving process and the receiving application process
are placed on different sockets (and thus, different cores), the bot-
tleneck is most likely inter-socket communication.

The remaining part of the paper is organized as follows. In the
next section,wediscuss and summarize our prior research and give
the motivation of this study. In Section 3, we describe the related
work. In Section 4, we describe the experimental setup used to
conduct this study. We discuss the results in Section 5. Finally, in
Section 6, we give the conclusions and outline the future work.

2. Motivation

In a previous study, we conducted research into the effect
of affinity on the end-system bottleneck [5], and concluded
that affinitization has a significant impact on the end-to-end
performance of high-speed flows. However, the study did not
identify the precise location of the end-system bottleneck for the
different affinitization scenarios and hence a clear understanding
of why different affinitization leads to significantly different

throughput performance. The goal of this research is to identify
the location of the end-system bottleneck in these different
affinitization scenarios, and evaluate whether or not these issues
have been resolved in newer implementations of the Linux kernel
(previous work was carried out on a Linux 2.6 kernel).

There are many valid arguments made in favor of the use of
various NIC offloads [7]. NIC manufacturers typically offer many
suggestions on how to tune the system in order to get the most
out of their high-performance hardware. A valuable resource for
Linux tuning parameters, obtained from careful experimentation
on ESnet’s 100 Gbps testbed, is available from [8]. A number of
reports provide details of the experiments that have led to their
tuning suggestions. However, there is a significant gap in the
understanding for these tuning suggestions and offloads.

In this paper, our methods focus on analyzing the parallelism
of protocol processing within the end-system. We endeavor
to demonstrate the variability of protocol processing efficiency
depending on the spatial placement of protocol processing tasks.
In this experimental study, we employ iperf3 [9] to generate a
stress test which consists of pushing the network I/O limit of the
end-system using a single, very high-speed TCP flow. This is not
a practical scenario; an application such as GridFTP [10] delivers
faster, more predictable performance by using multiple flows,
and such a tool should be carefully leveraged in practice when
moving large amounts of data across long distances. However, it is
important to understand the limitations of data transmission in the
end-system, which can best be accomplished using a single flow.

3. Related work

There have been several studies that have evaluated the
performance of network I/O inmulticore systems [11–14]. Amajor
improvement which is enabled by default in almost all the current
kernels is NAPI [15,3]. NAPI is designed to solve the receive livelock
problem [14] where most of the CPU cycles are spent in interrupt
processing. When the kernel enters a livelock state it spends most
of the available cycles in hard and soft interrupt contexts, and
consequently, is unable to performprotocol processing of anymore
incoming data. As a result of the interrupt queues overflowing,
packets would eventually be dropped during protocol processing.
This would trigger TCP congestion avoidance, but the problem
would soon repeat itself. ANAPI-enabled kernel switches to polling
mode at high rates to save CPU cycles instead of operating in a
purely interrupt-driven mode. Related studies that characterize
packet loss and the resulting performance degradation over
10 Gbps Wide-Area Network (WAN) include [4,16,17]. The study
in [18] focuses more on the architectural sources of latency rather
than throughput of intra-datacenter links.

Another method of improving the adverse effects of the end-
system bottleneck involves re-thinking the hardware architecture
of the end-system altogether. NICs optimized for specific transport
protocols have been proposed along these lines [19]. End-system
architectural reorganization has also been proposed in [20].
Unfortunately, too few of these changes have found their way into
the type of commodity end-systems that have been deployed for
the purposes of these tests.

3.1. Protocol processing parallelism

Since end-systemprocessor architectures have been scaling out
to multiple cores, rather than up in clock speed, systems designers
have faced unique challenges in exploiting this parallelism for
network-related processing. There have been several related, but
essentially discrete methods to this end.

N. Hanford et al. / Future Generation Computer Systems () – 3

Receive-side scaling (RSS) is a NIC driver technology which al-
lows multiqueue-enabled NICs to take advantage of the multipro-
cessing capabilities of an multicore end-system. Specifically, it al-
lows the NIC driver to schedule the interrupt service routine (ISR)
on a specific core [21]. Thiswill ensure that the corewhich received
the data is the same core that processes the interrupt. This effec-
tively binds flow and interrupts affinity on most modern operat-
ing systems. NICs may implement RSS-compatibility in hardware
or the driver. Receive Packet Steering (RPS) [22] is implemented
in host kernel. It allows for the selection of the CPU core that will
perform protocol processing for an incoming set of packets on a re-
ceiving end-system. Receive Flow Steering (RFS) [23] is extension
of RPS which adds another layer of control aimed at ensuring that
flow and application processing occur on the same logical core.

As commodity multicore systems continue to scale out to more
multiple cores, the resource access time between cores is no
longer uniform, due to the fact that core-to-core interconnects
could no longer be implemented practically supporting uniform
propagation speeds. Originally, this affected access to memory
most drastically, hence, such systems were referred to as Non-
UniformMemory Access (NUMA) [24]. However, with today’s high
speed I/O and network devices rivaling memory throughput, this
non-uniformity affects network and I/O data movement as well.

Common wisdom is to select cores that share the same lowest
cache structure1 when doing network processing [25,12]. For
example, when a given core (e.g. core A) is selected to do
the protocol/interrupt processing, the core that shares the L2
cache with core A should execute the corresponding user-level
application. Doing sowill lead to fewer context switches, improved
cache performance, and ultimately higher overall throughput.

The Linux irqbalance daemon does a round-robin scheduling to
distribute interrupt processing load among cores. However, it has
adverse effects as shown by [26,27]. We require a more informed
approach and we need control over selecting cores for interrupt
processing. In our experiments we disable the irqbalance daemon.

Pause frames [28] allow Ethernet to implement its own link-
layer flow-control to avoid triggering TCP flow or congestion
control, thus avoiding a multiplicative decrease in window size
when only temporary buffering at the router or switch is necessary.
In order to do this, Ethernet devices which support pause frames
use a closed-loop process in each link in which the sending device
ismade aware of the need to buffer the transmission of frames until
the receiver is able to process them.

Jumbo Frames are Ethernet frames that are larger than the
original IEEE standard 1500-byte Maximum Transmission Unit
(MTU). In most cases, starting with Gigabit Ethernet, frame sizes
canbeup to 9000bytes. This allows for better protocol efficiency by
increasing the ratio of payload to header size for a frame. Although
Ethernet speeds have now increased to 40 and 100 Gbps, this
standard 9000-byte frame size has remained the same [29]. The
reason for this is the various segmentation offloads. Large/Generic
Segment Offload (LSO/GSO) and Large/Generic Receive Offload
(LRO/GRO) work in conjunction with Ethernet implementations in
contemporary routers and switches to send and receive very large
frames in a single TCP flow, for which the only limiting factor is the
negotiation of transfer rates and error rates.

3.2. Data movement techniques

Although this research is not directly concerned with the prac-
tice of moving large amounts of data across long distances, there

1 In this document we consider the L1 cache to be at a lower level (closer to the
core) than the L2 cache, L2 lower than L3, etc.

have been several implementations of effective end-system ap-
plications which have helped leverage TCP efficiently [10,30–32].
The general idea behind these sophisticated applications is to use
TCP striping, splitting transfers at the application layer into mul-
tiple TCP flows, and assigning the processing and reassembly of
those flows to multiple processors [33–35]. Most of these appli-
cations are also capable of leveraging alternative transport-layer
protocols based on UDP, such as RBUDP [36] and UDT [37].

There have long been protocols designed for moving large
amounts of data quickly and reliablywithin closednetworks, either
within datacenters, or between datacenters. Lately, such protocols
have focused on moving data directly from the memory of one
system into the memory of another. One contemporary example
is Remote Direct Memory Access (RDMA) [38] and its original
physical layer, InfiniBand [39]. Typically, due to the addressing and
routing requirements of these protocols, they require well-curated
networks and have often been relegated to intra-datacenter traffic.

4. Experimental setup

We have employed two servers that are connected back-to-
back with a Round-Trip Time (RTT) of less than 1 ms. In our
previous experimental study [5] we had used the ESnet Testbed’s
95 ms RTT fiber loop. While loop testing is important to analyze
end-to-end TCP performance over long distances, our goal here
was to place stress on, and analyze, the performance efficiency of
receiver end-system.

Both of the systems in these experiments were running
Fedora Core 20 with the 3.13 kernel, as opposed to our previous
experiments, which used CentOS6 running a 2.6 kernel. The use of
one of the latest Linux kernels assures that the latest advancements
in kernel networking design are employed in the end-systems.

The benchmark application used to generate the TCP flows was
iperf3. Again, to ensure that the stress was placed on the end-
system, the transfers were performed in zero-copy mode, which
utilizes the TCP sendfile system call to avoid unnecessary copies
into and out of memory on the sending system.

The systems under test were modeled after prototypes for
ESnet Data Transfer Nodes (DTNs). The goal of these systems is
to serve as an intermediary to transfer large amounts of data
from high-performance computers (HPCs) to the consuming end-
systems [40]. In practice, theymust be able to take in large amounts
of data as quickly as possible through InfiniBandhost-bus adaptors,
transfer the data to local disks or large amounts of local memory,
and then serve the data over high-speed (100Gbps)WAN to similar
receiving systems. They make use of PCI-Express Generation 3
connected to Intel Sandy Bridge processors. There are two hexa-
core processors per end-system.2 Due to the design of Sandy Bridge
processors, each socket is directly connected to its ownPCI-Express
bus, meaning that certain PCI-Express slots are directly physically
linked to a single socket. This limitation is overcome with the
addition of low-level inter-socket communication provided by the
Quick Path Interconnect (QPI). This architecture is shown in Fig. 1.

The testbed used was the ESnet 100 Gbps testbed [41], which
is host to a variety of commodity hardware based end-systems
connected to a dedicated transcontinental 100 Gbps network. The
testbed is open to any researcher, and provides the added benefit
of yielding repeatable results, since the entire testbed is reservable.
This guarantees that there is no competing traffic. For the purposes
of these experiments, it allowed us to ensure that the bottleneck
was in the end-systems, and not the network.

2 Herein, these six-core packages will be referred to as ‘‘sockets’’ and the
individual multi-instructionmulti-data (MIMD) cores will be referred to as ‘‘cores’’.

4 N. Hanford et al. / Future Generation Computer Systems () –

Fig. 1. Block diagram of the end-system I/O architecture.

The Linux performance profiler used was Oprofile. Oprofile
is a system profiler for Linux which enables lightweight, but
highly introspectivemonitoring of system hardware counters [42].
Oprofile’s new ocount and operf tools were used to monitor
counters of various events on the receiving system. Oprofile’s low
overhead and ability to do detailed Linux kernel introspection
proved critical in these experiments, due to the need to monitor
a possibly oversubscribed receiver. The overhead of operf was
able to be effectively measured through the introspection, and
it was found that this overhead was always at least one order
of magnitude less than the counter results from the monitored
processes. Oprofile was chosen over Intel’s Performance Counter
Monitor (PCM) for these experiments due to the number of
counters available and the introspection capability. However, PCM
is capable of reporting power consumption, which could be useful
in future tests.

The following are the modified receiving system parameters
used in the experiments:

• Flow affinity: Cores 0 through 11
• Application affinity: Cores 0 through 11
• Total number of tests: 12 × 12 = 144.

In order to analyze both the performance and overall perfor-
mance efficiency of the transfers in the different affinitization sce-
narios, wemeasured the throughput, the instructions retired (both
system-wide and by the kernel) and user processes, the last level
cache references, the L2 cache accesses, the memory transactions
retired, and the off-core requests. In order for anyOprofile compar-
isons to be meaningful, the total instructions retired by the pro-
cessor core needs to be counted [42]. The remaining counter re-
sults can be considered subsets of the instructions retired. We are
particularly interested in the memory hierarchy for these experi-
ments, because memory access allows us to at least infer how data
is being moved around through the processor and which links are
used. We also focused on the memory controller as a possible bot-
tleneck, and we found the count of cache transactions at layers 2
and 3 helpful for this, as well as the number of primary memory
transactions. (Note that, theoretically, primary memory transac-
tions need only occur when the last level cache is either filled or
missed.) Offcore requests were also monitored, but did not appear
to pick up the critical low-level PCI data being transmitted between
the sockets on theQPI. Unfortunately, those counters havenot been
made available by our BIOS manufacturer.

Table 1
List of system parameters.

Parameter Value

RTT <1 ms
Router ALU S7750 100 Gbps
Motherboard PCI Gen3
Processors 2 hexa-core Intel Sandy Bridge
Processor Model Intel Xeon E5-2667
On-Chip QPI 8 GT/s
NIC Mellanox ConnectX-3 EN
NIC Speed 40 Gbps
Operating System Fedora Core 20 Kernel 3.13
irqbalance Disabled
TCP Implementation HTCP
Hardware Counter Monitor Oprofile 0.9.9
Test Application iperf3 3.0.2

4.1. List of system parameters

A summary of the experimental environment is listed in Table 1.
The sending and receiving end systems were identical.

4.2. Experimental approach

Before each experimental run of 144 tests, a script would
recheck a variety of system network settings and tuning parame-
ters, to ensure that subsequent runs of the experimentwere consis-
tent. The system was configured using ESnet’s tuning recommen-
dations for the highest possible TCP performance. Preliminary tests
were conducted to ensure that no anomalies were causing vari-
able bandwidth results. The sending system was set to an optimal
affinity configuration and its affinity settingswere not changed. An
iperf3 server was started on the sender and left running. Then, on
the receiver, a nested for-loop shell script modified the settings in
/proc/irq/<irq# of all rx queues>/smp_affinity such that all the re-
ceive queues were sent to the same core. The inner for loop would
run operf while conducting an iperf3 reverse TCP zero-copy test,
binding the receiver to a given core, and then report the results.
In this manner, all combinations of Flow and Application affinity
were tested. The experiment was run several times to ensure con-
sistency.

5. Results

Both our current and previous work [5] concluded that there
exists three different performance categories, corresponding to
the following affinitization scenarios: (1) Same Socket Same Core
(i.e., both Flow and Application affinitized to the same core), which
reaches a throughput of around 20 Gbps; (2) Different Sockets
(thus Different Cores) which reaches a throughput of around
28 Gbps; and (3) Same Socket Different Cores, which reaches
a throughput of around 39 Gbps. While changing the OS (from
CentOS running a 2.6 kernel to Fedora running a 3.13 kernel) and
updating the NIC driver improved the overall performance, the
relative performance for the three affinitization settings remained
the same.

Our previous work showed that there was a correlation
between low throughput and cache misses over-subscribed
receiver at the system level. This work picks up at that point, using
ocount to monitor the hardware counters at the system level and
operf for kernel introspection, to closely examine the source of the
bottleneck in the receiver.

N. Hanford et al. / Future Generation Computer Systems () – 5

Fig. 2. The throughput results of all 144 tests arranged in amatrix by affinity choice.
The empty circles represent the line rate of the NICs (40 Gbps). The size of the filled-
in circles corresponds to the achieved throughput.

5.1. Interpretation of results

In order to convey the results of the 144 tests effectively, we
elected to create a matrix as seen in Fig. 2. The Application affinity
lies on the y-axis, while the Flow affinity lies along the x-axis. The
numbers 0 through 11 on both axes represent the physical cores,
as they appear to the operating system. Therefore, cores 0 through
5 lie on socket 0, and cores 6 through 11 lie on socket 1. As amatrix,
the chart has two important properties:

(1) The diagonal that appears in Fig. 2 represents the case where
the Application and the Flow are affinitized to the same core.

(2) The chart may be viewed in quadrants, where each quadrant
represents the four possible combinations of affinity to the two
sockets. In other words, all of the points where the Application
affinity core is greater than 5 but the Flow affinity core is less
than 6 represent the case where the Application is affinitized
to socket 1 and the Flow is affinitized to socket 0, etc.

5.2. Flow and application processing efficiency

In the following figures we introduce Oprofile hardware
counter results. When interpreting these results, it is important
to note that hardware counters, on their own, convey little
information. For example, one could simply look at the total
number of Instructions Retired during the iperf3 transfer, but this
would not take into account the amount of data that was actually
transferred. The goal here is to view the efficiency, so the number
of instructions retired has been divided by the throughput of the
transfer (in Gbps). This allows normalization of the results because
the length of each test was identical.

Fig. 3 shows the number of instructions retired per gigabyte
per second of data transfer. The diagonal in this figure shows the
processing inefficiency when both the Flow and Application are
affinitized to the same core. In this case, not only is the throughput
poor, as seen in Fig. 2, but the processing efficiency is also much
worse than the other cases. The case where the Flow is affinitized
to socket 0 but the Application is affinitized to socket 1 shows
that more instructions are required to move data from socket 0 to
socket 1.

5.3. Impact of the memory hierarchy

With the exception of the diagonal case mentioned above
(where the Application and Flowwere affinitized to the same core),
user copies (copy_user_generic_string) dominated the resource

Fig. 3. The processing efficiency of the 144 tests; larger circles represent poorer
efficiency.

Fig. 4. The fraction of instructions retired/throughput dedicated to Level 2 cache
transactions (as measured by counter l2_trans) for all 144 tests.

consumption in the end system. From a system-wide perspective,
this was demonstrated by a large percentage of instructions that
were dedicated to accessing the memory hierarchy, as shown in
Figs. 4–6. It should be noted that the titles of these figures have
been abbreviated. Again, the raw counter output has littlemeaning
here, so the counter data has been divided by the Instructions
Retired/Throughput (Fig. 3).

In the cases where the Application and Flow are affinitized to
different cores, but are on the same sockets, memory hierarchy
transactions appear to dominate the total instructions retired.
However, these transfers were so close to line rate that the
memory hierarchy was most likely not an actual bottleneck.
Preliminary investigation shows that for the cases where the Flow
and Application affinity are on different sockets, the bottleneck
is possibly due to LOCK prefixes as the consuming core waits for
coherency.

However, in the cases where the Application and Flow were
affinitized to different sockets, a notably smaller fraction of in-
structions retired are dedicated tomemory hierarchy transactions,
despite the fact that user copies continue to dominate CPU utiliza-
tion. Many different counters have been monitored and analyzed
in an attempt to find the bottleneck in this case, including hard-
ware interrupts and cycles due to LOCK prefixes, but none showed
any correlation to this affinitization scenario.

6 N. Hanford et al. / Future Generation Computer Systems () –

Fig. 5. The fraction of instructions retired/throughput dedicated to Last level cache
transactions (as measured by counter LLC_TRANS) for all 144 tests.

Fig. 6. The fraction of instructions retired/throughput dedicated to memory
transactions (as measured by counter mem_trans_retired) for all 144 tests.

5.4. The NIC driver CPU utilization bottleneck

Interestingly, in the diagonal case, transactions involving the
memory hierarchy represent a relatively small fraction of the
overall instructions retired. In these cases, introspection shows us
that the NIC driver (mlx4_en) is the primary consumer of system
resources. The exact source of the bottleneck in this case will be
investigated in the future using driver introspection.

6. Conclusion and future work

One of themost important results of the clock speedwall is that
the line between intra-system and inter-system communication
is rapidly blurring. For one processor core to communicate with
another, data must traverse an intra-system (on-chip) network.
For large-scale data replication and coherency, data must traverse
a WAN. How are these networks meaningfully different? WAN
data transfer performance continues to become less of a limiting
factor, and networks are becoming more reliable and more
easily reconfigurable. At the same time, intra-system networks
are becoming more complex (due to scale-out systems and
virtualization), and perhaps less reliable (as energy conservation
occasionally demands that parts of a chip could be slowed down, or
turned off altogether). When discussing affinitization, it becomes
obvious that despite these changes, distance and locality still
matter, whether the network is ‘‘large’’ or ‘‘small’’. In the future,
the most efficient solution may be not only to integrate a NIC onto

the processor die [20], but perhaps even integrate the functionality
with existing I/O structures, such as theNorth Bridge. However, the
feasibility of doing so may be years away.

More tangibly, this research has concluded that moving more
components of a system onto a chip (in this case, the PCI north
bridge) needs to be done carefully, or it could result in sub-
optimal performance across sockets. This provides an important
backdrop upon which to perform end-system-centric throughput
and latency tests, with attention to the fact that architectural
latency sources for end-to-end TCP flows could vary drastically on
high-throughput, high-performance hardware.

In the meantime, other NICs and other NIC drivers are being
tested in similar ways to see if results are similar, and if
generalizations can be made. The relatively recent advancement
in NIC drivers that automatically switches between interrupt
coalescing and polling is also being studied. In addition, results for
practical, multi-stream TCP, and UDT GridFTP transfers are being
examined along these lines. A future goal should be to implement
a lightweightmiddleware tool that could optimize affinitization on
a larger scale, extending the work that has been carried out on the
Cache Aware Affinitization Daemon [25].

Acknowledgments

This research used resources of the ESnet Testbed, which was
supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-05CH11231. This research was
also supported by NSF grants CNS-0917315 and CNS-1528087.

References

[1] G. Keiser, Optical Fiber Communications, John Wiley & Sons, Inc, 2003.
[2] C. Benvenuti, Understanding Linux Network Internals, O’Reilly Media, 2005.
[3] W. Wu, M. Crawford, M. Bowden, The performance analysis of linux

networking packet receiving, Comput. Commun. 30 (5) (2007) 1044–1057.
Advances in Computer Communications Networks.

[4] W. Wu, M. Crawford, Potential performance bottleneck in linux tcp, Int. J.
Commun. Syst. 20 (11) (2007) 1263–1283.

[5] N. Hanford, V. Ahuja, M. Balman, M.K. Farrens, D. Ghosal, E. Pouyoul, B.
Tierney, Characterizing the impact of end-system affinities on the end-to-end
performance of high-speed flows, in: Proceedings of the Third International
Workshop on Network-Aware Data Management, NDM ’13, ACM, New York,
NY, USA, 2013, pp. 1:1–1:10.

[6] N. Hanford, V. Ahuja,M. Balman,M.K. Farrens, D. Ghosal, E. Pouyoul, B. Tierney,
Impact of the end-systemand affinities on the throughput of high-speed flows,
2014.

[7] A. Currid, Tcp offload to the rescue, Queue 2 (2004) 58–65.
[8] ESnet, Linux tuning, http://fasterdata.es.net/host-tuning/linux.
[9] ESnet, iperf3,

http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/
iperf-and-iperf3/.

[10] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu,
I. Foster, The globus striped gridftp framework and server, in: Proceedings of
the 2005 ACM/IEEE Conference on Supercomputing, IEEE Computer Society,
2005, p. 54.

[11] A. Pande, J. Zambreno, Efficient translation of algorithmic kernels on large-
scale multi-cores, in: International Conference on Computational Science and
Engineering, 2009, vol. 2, CSE’09, IEEE, 2009, pp. 915–920.

[12] A. Foong, J. Fung, D. Newell, An in-depth analysis of the impact of processor
affinity on network performance, in: 12th IEEE International Conference
on Networks, 2004. (ICON 2004). vol. 1, Proceedings, vol. 1, Nov 2004,
pp. 244–250.

[13] M. Faulkner, A. Brampton, S. Pink, Evaluating the performance of network
protocol processing on multi-core systems, in: International Conference on
Advanced Information Networking and Applications, 2009. AINA ’09, May
2009, pp. 16–23.

[14] J. Mogul, K. Ramakrishnan, Eliminating receive livelock in an interrupt-driven
kernel, ACM Trans. Comput. Syst. 15 (3) (1997) 217–252.

[15] J. Salim, When napi comes to town, in Linux 2005 Conf, 2005.
[16] T. Marian, D. Freedman, K. Birman, H. Weatherspoon, Empirical characteri-

zation of uncongested optical lambda networks and 10gbe commodity end-
points, in: 2010 IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), IEEE, 2010, pp. 575–584.

[17] T. Marian, Operating systems abstractions for software packet processing in
datacenters (Ph.D. thesis), Cornell University, 2011.

http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref1
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref2
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref3
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref4
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref5
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref7
http://fasterdata.es.net/host-tuning/linux
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref10
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref11
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref14
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref16
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref17

N. Hanford et al. / Future Generation Computer Systems () – 7

[18] S. Larsen, P. Sarangam, R. Huggahalli, S. Kulkarni, Architectural breakdown of
end-to-end latency in a tcp/ip network, Int. J. Parallel Program. 37 (6) (2009)
556–571.

[19] W. Wu, P. DeMar, M. Crawford, A transport-friendly nic for multi-
core/multiprocessor systems, IEEE Trans. Parallel Distrib. Syst. 23 (4) (2012)
607–615.

[20] G. Liao, X. Zhu, L. Bhuyan, A new server i/o architecture for high speed
networks, in: 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (HPCA), IEEE, 2011, pp. 255–265.

[21] B.E. Veal, A. Foong, Adaptive receive side scaling, June 29 2007. US Patent App.
11/771,250.

[22] T. Herbert, rps: receive packet steering, September 2010. http://lwn.net/
Articles/361440/.

[23] T. Herbert, rfs: receive flow steering, September 2010. http://lwn.net/Articles/
381955/.

[24] J.L. Hennessy, D.A. Patterson, Computer Architecture — A Quantitative
Approach, fifth ed., Morgan Kaufmann, 2012.

[25] V. Ahuja, M. Farrens, D. Ghosal, Cache-aware affinitization on commodity
multicores for high-speed network flows, in: Proceedings of the Eighth
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ACM, 2012, pp. 39–48.

[26] A. Foong, J. Fung, D. Newell, S. Abraham, P. Irelan, A. Lopez-Estrada,
Architectural characterization of processor affinity in network processing,
in: IEEE International Symposium on Performance Analysis of Systems and
Software, 2005, ISPASS 2005, IEEE, 2005, pp. 207–218.

[27] G. Narayanaswamy, P. Balaji,W. Feng, Impact of network sharing inmulti-core
architectures, in: Proceedings of 17th International Conference on Computer
Communications and Networks, 2008, ICCCN’08, IEEE, 2008, pp. 1–6.

[28] B. Weller, S. Simon, Closed loop method and apparatus for throttling the
transmit rate of an ethernet media access controller, Aug. 26 2008. US Patent
7,417,949.

[29] M. Mathis, Raising the internet mtu, http://www.psc.edu/mathis/MTU, 2009.
[30] S. Han, S. Marshall, B.-G. Chun, S. Ratnasamy, Megapipe: A new programming

interface for scalable network i/o., in OSDI, 2012, pp. 135–148.
[31] M. Balman, T. Kosar, Data scheduling for large scale distributed applications,

in: Proceedings of the 9th International Conference on Enterprise Information
Systems Doctoral Symposium (DCEIS 2007), DCEIS 2007, 2007.

[32] M. Balman, Data Placement in Distributed Systems: Failure Awareness and
Dynamic Adaptation in Data Scheduling, VDM Verlag, 2009.

[33] M. Balman, T. Kosar, Dynamic adaptation of parallelism level in data transfer
scheduling, in: International Conference on Complex, Intelligent and Software
Intensive Systems, 2009. CISIS ’09, March 2009, pp. 872–877.

[34] M. Balman, E. Pouyoul, Y. Yao, E.W. Bethel, B. Loring,M. Prabhat, J. Shalf, A. Sim,
B.L. Tierney, Experiences with 100gbps network applications, in: Proceedings
of the Fifth InternationalWorkshop on Data-Intensive Distributed Computing,
DIDC ’12, ACM, New York, NY, USA, 2012, pp. 33–42.

[35] M. Balman, Memznet: Memory-mapped zero-copy network channel for
moving large datasets over 100 gbps network, in: Proceedings of the 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis,
SCC ’12, IEEE Computer Society, 2012.

[36] E. He, J. Leigh, O. Yu, T. Defanti, Reliable blast udp : predictable high
performance bulk data transfer, in: 2002 IEEE International Conference on
Cluster Computing, 2002. Proceedings, 2002, pp. 317–324.

[37] Y. Gu, R.L. Grossman, Udt: Udp-based data transfer for high-speed wide area
networks, Comput. Netw. 51 (7) (2007) 1777–1799. Protocols for Fast, Long-
Distance Networks.

[38] R. Recio, P. Culley, D. Garcia, J. Hilland, B. Metzler, A Remote Direct
Memory Access Protocol Specification, tech. rep., IETF RFC 5040, 2007,
http://dx.doi.org/10.17487/RFC5040.

[39] I.T. Association, et al., InfiniBand Architecture Specification: Release 1.0,
InfiniBand Trade Association, 2000.

[40] E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The science dmz:
A network design pattern for data-intensive science, in: Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, ACM, New York, NY, USA, 2013, pp. 85:1–85:10.

[41] Esnet 100 gbps testbed. http://www.es.net/RandD/100g-testbed.
[42] J. Levon, P. Elie, Oprofile: A system profiler for linux. http://oprofile.sf.net,

2004.

Nathan Hanford is a Ph.D. candidate and graduate stu-
dent researcher for the Graduate Group in Computer Sci-
ence at the University of California, Davis. His research in-
terests involve leveraging commodity end-system hard-
ware over very high-speed interconnects and networks.
To this end, he is interested in system-level software and
lightweight middleware which enable meaningful end-
system and node-level awareness. He is also interested in
the HPC and cloud-computing applications of commodity
hardware, and its implications for SDN. He has previously
worked as a summer student in ESnet’s AdvancedNetwork

Technologies Group, where he conducted research on Data Transfer Nodes formov-
ing large amounts of scientific data. He holds a Bachelor of Science in Engineering
in Computer Science and Engineering from the University of Connecticut.

Vishal Ahuja is a Senior Data Engineer at Target. Previ-
ously he worked as a Post-doctoral Fellow for the De-
partment of Computer Science at the University of Cal-
ifornia, Davis. His interests focus on creatively leverag-
ing emerging commodity hardware towards efficient and
predictable distributed systems. Towards that end, he has
developed several tools and optimizations for end-to-end
data transfers along with message broker implementa-
tions. He holds a Ph.D. in Computer Science from the Uni-
versity of California, Davis.

Matthew K. Farrens is a Professor at the University
of California, Davis. He is interested in all aspects of
computer architecture, but primarily in the architecture
and design of high-performance single-chip processors
with an emphasis on the interconnection/communication
layer. He is also interested in high-speed scientific
processing, in particular in exploring issues related to the
memory system, and in instruction level parallelism. He
holds a Ph.D. in Electrical and Computer Engineering from
the University of Wisconsin, Madison.

Dipak Ghosal is a Professor at the University of California,
Davis. His research interests include high-speed networks,
wireless networks, vehicular ad hoc networks, parallel and
distributed systems, timing channels, and theperformance
evaluation of computer and communication systems. He
holds a Ph.D. in Computer Science from the University of
Louisiana, Lafayette.

Mehmet Balman is a Senior Performance Engineer at
VMware Inc., working on hyper-converged storage and
virtualized solutions. He is also a Guest Scientist at
Lawrence Berkeley National Laboratory. He has previously
worked as a Researcher/Engineer in the Computational Re-
search Division at Lawrence Berkeley National Laboratory,
where his work particularly dealt with performance prob-
lems in high-bandwidth networks, efficient data transfer
mechanisms and data streaming, high-performance net-
work protocols, network virtualization, and data transfer
scheduling for large-scale applications. He holds a Ph.D. in

Computer Science from Louisiana State University.

Eric Pouyoul is a Senior System Engineer in ESnet’s
Advanced Network Technologies Group at Lawrence
Berkeley National Laboratory (LBNL). His interests include
all aspects of high performance big data movement,
networking, hardware, software and distributed systems.
He has been ESnet Lead for designing Data Transfer Nodes
(DTN) as defined in the ScienceDMZarchitecture aswell as
ESnet’swork in Software DefinedNetworking (OpenFlow).
He joined ESnet in 2009 and his 25 years prior experience
includes real-time operating system, supercomputing and
distributed systems.

Brian L. Tierney is a Staff Scientist and Group Leader of the
ESnet AdvancedNetwork Technologies Group at Lawrence
Berkeley National Laboratory, and is PI of ESnet’s 100G
Network Testbed Project. His research interests include
high-performance networking and network protocols;
distributed system performance monitoring and analysis;
network tuning issues; and the application of distributed
computing to problems in science and engineering. He
has been the PI for several DOE research projects in
network and Grid monitoring systems for data intensive
distributed computing. He was the Principal Designer of

the Distributed Parallel Storage System (DPSS), wheremany of the ideas for GridFTP
originated. He also designed the first version of the NetLogger Toolkit, and worked
on the Bro Intrusion Detection System. He was co-chair of the 2nd International
Workshop on Protocols for Long Distance Networks (PFLDnet) in 2004. He holds an
M.S. in Computer Science from San Francisco State University, and a B.A. in Physics
from the University of Iowa.

http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref18
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref19
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref20
http://lwn.net/Articles/361440/
http://lwn.net/Articles/361440/
http://lwn.net/Articles/361440/
http://lwn.net/Articles/361440/
http://lwn.net/Articles/361440/
http://lwn.net/Articles/381955/
http://lwn.net/Articles/381955/
http://lwn.net/Articles/381955/
http://lwn.net/Articles/381955/
http://lwn.net/Articles/381955/
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref24
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref25
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref26
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref27
http://www.psc.edu/mathis/MTU
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref32
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref34
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref35
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref37
http://dx.doi.org/10.17487/RFC5040
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref39
http://refhub.elsevier.com/S0167-739X(15)00292-7/sbref40
http://www.es.net/RandD/100g-testbed
http://oprofile.sf.net

	Improving network performance on multicore systems: Impact of core affinities on high throughput flows
	Introduction
	Motivation
	Related work
	Protocol processing parallelism
	Data movement techniques

	Experimental setup
	List of system parameters
	Experimental approach

	Results
	Interpretation of results
	Flow and application processing efficiency
	Impact of the memory hierarchy
	The NIC driver CPU utilization bottleneck

	Conclusion and future work
	Acknowledgments
	References

