
A Scalable Framework for Representation and Exchange of Network Measurements

Jason Zurawski, Martin Swany Dan Gunter
Department of Computer and Information Sciences Lawrence Berkeley National Laboratory

University of Delaware, Newark, DE 19716 Berkeley, CA 94720
{zurawski, swany}@cis.udel.edu dkgunter@lbl.gov

Abstract

Grid and distributed computing environments are evolving
rapidly and driving the development of system and network
technologies. The design of applications has placed an in-
creased emphasis upon adapting application behavior based
on the performance of the network. In addition, network oper-
ators and network researchers are naturally interested in gath-
ering and studying network performance information.

This work presents an extensible framework for the storage
and exchange of performance measurements. Leveraging ex-
isting storage and exchange mechanisms, the proposed frame-
work is capable of handling a wide variety of measurements
while delivering performance comparable to that of less flexi-
ble, ad-hoc solutions.

1 Introduction

The process of collecting network measurements for use
in distributed and Grid environments is desirable for enabling
adaptive usage of resources, as well as for operational support
and utilization information. Many tools exist to measure the
various “characteristics” of the network, such as bandwidth,
delay, and loss [15]. Statistical information derived from these
measurements is needed for predicting future performance, and
for the tuning of networked applications. However, without a
consistent and readily available set of names for, and repre-
sentations of, this diverse pool of information, analysis span-
ning multiple organizations and network measurement infras-
tructures are difficult to perform as well as validate.

In this paper, we describe and investigate an extensible sys-
tem for storing and processing performance information in dis-
tributed environments, such as the Grid. We limit the scope of
our description and results to the system’s primary goal of stor-
ing and processing network metrics, but note that the design
is applicable to other types of performance information. The
internal design of such a system consists of two major parts:
syntactic and semantic conventions dealing in the representa-
tions of various network measurements and a generalized ac-
cess mechanism to the underlying information. As the frame-

work itself remains language neutral, this work explores two
implementation strategies built around the data representation.

As we are focused on programmatic access to measure-
ments, storage and exchange formats play a crucial role in the
overall design of the system. To scale, the system must be able
to take advantage of inheret redundancies in the data access
patterns. The most basic of these, for time-varying monitoring
data, is the separation of infrequently changing metadata from
frequent, time-sensitive, data. Many proposed exchange for-
mats, such as the GLUE [9] schema XML representation and
earlier work by the NM-WG, leave this separation up to the im-
plementation. In contrast, the data exchange format presented
here explicitly separates metadata from data.

This explicit separation has several important benefits. In
stable storage, it lends itself to a more normalized layout for the
measurement. On the wire and in a Web Services [29] context,
the basis for an “include by reference” mechanism is formed,
allowing implementations to eliminate redundant information
in a way that is independent of the specific data representation.
This in turn simplifies the delivery framework, which need only
worry about efficient encodings.

The second contribution of this work is a consistent ap-
proach to data exchange format extension and evolution, in the
context of XML. The basic idea is not new and in the area
of network measurements dates back at least to the design of
SNMP [23]. But we update this approach to use Web Services-
friendly identifiers (URI’s instead of OID’s) and arrange our
schemas so that the “required” elements are minimized. This
allows new measurements to easily and independently extend
the basic framework.

The formats employed by this work were developed as part
of continuous work within the Global Grid Forum (GGF) Net-
work Measurements Working Group (NM-WG) [16] and are
currently used in several other projects [1, 10, 17, 22, 25]. The
authors composed a subgroup of NM-WG that designed this
schema. The implementations presented here are not the result
of input from the NM-WG.

This paper will proceed as follows: Section 2 presents the
obstacles and design considerations to this work. We lay out
the major architectural considerations in Section 3, followed by
details specific to our implementation in Section 4. The results

1-4244-0106-2/06/$20.00 ©2006 IEEE

gathered from a series of experiments are featured in Section 5.
Section 6 relates some of the previous contributions in this field
of research; we present concluding remarks in Sections 7.

2 Problem Statement

There are potentially conflicting design goals that motivate
this work, such as the tension between interoperability and flex-
ibility. Agreeing on standard mechanisms for sharing data in a
large and diverse group like the GGF [8] has made it clear that
a single interface and storage format is difficult to define, as
there are many different environments in which performance
information is gathered, used, and encoded. Of course, any so-
lution which is so rigid as to preclude the inevitable advances
in this area will not be successful. Challenges aside, the goals
of our measurement and monitoring framework must facilitate:

• Normalized data encoding in canonical formats

• Extensibility to new data sources

• Flexible re-use of basic components

• Use of existing solutions and technologies

• Language/Implementation independence

One key facet of our problem is the apparent trade-off be-
tween extensibility and efficiency for Grid performance mon-
itoring systems. On the one hand, the Grid community has
adopted World Wide Web Consortium (W3C) [28] standards,
such as eXtensible Markup Language (XML) [31] and Simple
Object Access Protocol (SOAP) [24] to enable portability and
interoperability. On the other hand, we know that the perfor-
mance of the information system is important in that overhead
incurred there affects the performance of the entire system. Ad-
ditionally, there are the storage requirements of the data. Stor-
age of a large number of encoded data elements, all of which
demonstrate a similar pattern yet contain different information,
is inefficient. 1 We address these two conflicting goals in turn.

2.1 Measurement Representation

The basic goal of the storage and exchange formats portion
of the framework we present here is to allow the separation of
rapidly changing information, henceforth the “data”, from rel-
atively constant information, or the“metadata”. For example,
a network traceroute would have as data the IP address and
time of each network probe, and would have as metadata the
source and destination host of the entire probe along with the
tool used, its parameters, etc. This economy leads to efficiency.
Metadata can then be stored, searched, and transmitted sepa-
rately from the more dynamic data. Identifiers for explicitly
linking the metadata and data sections, even when they do not

1Clearly, this type of storage is quite compressible, but that can cause prob-
lems for searching, etc.

appear in the same physical location, are naturally considered
in this framework.

A secondary goal is re-usability within the broader scope
of grid information exchange. Many information exchange
schemas, including earlier versions of the GGF NM-WG
schemas, had separate request and response sub-schemas. The
approach presented here separates the semantics of the ex-
change pattern from that of the data representation. That is,
a common representation of data and metadata is used for
both requests and responses, simplifying the schema consid-
erably and allowing for subsequent re-use of base definitions.
This becomes even more desirable if you consider communi-
cating measurements in a notification framework such as WS-
Notification [30].

2.1.1 Measurement Encoding

XML provides the capability to produce self-describing docu-
ments. This has many advantages, but efficiency is not one of
them. In the words of the XML 1.0 specification, “Terseness in
XML markup is of minimal importance” [31]. This inefficiency
makes both serialization and deserialization much slower than
more machine-friendly formats. However, the gains in interop-
erability from text-based self-describing formats are also im-
portant for large distributed systems, as evidenced by the ex-
plosion of XML representations and toolchains in this area. We
attempt to strike a happy medium by minimizing the redundant
elements in the XML representation, and, when even that won’t
do, including support for specifying out-of-band mechanisms
(e.g., binary formats) for transmitting the bulk of the data.

This approach to encoding can also be viewed as normal-
ization. By storing the data entries in a normalized fashion
and referring to external metadata as appropriate, we can ad-
dress all our stated problems. By providing for simple recur-
ring event storage in a minimal format, we can support high-
performance data transfers and the automatic assembly of com-
plex, self-identifying XML structures for simple applications
and for human consumption. We will present below perfor-
mance results that show that the schemas described here im-
pose minimal overhead in comparison to raw SQL operations.

3 Schemas

The framework we present here is comprised of two major
parts: the XML schema definition for measurement instances,
and the software designed to store and deliver these instances
on demand. We present a basic overview of the general schema
with the understanding that specialized schemas may be devel-
oped from this initial pattern to fit the many different tools and
characteristics of network measurement. This discussion will
be followed by an overview of the prototype we have designed
to manage interface utilization data.

3.1 XML Schema Language

The standard serialization format for the NM-WG data is
XML. Therefore the primary representation of an NM-WG
schema is an XML schema language, in this case the OASIS
standard RELAX-NG [20]. We chose this language for its read-
ability and elegance, keeping in mind that it may need transla-
tion to XML Schema [32], the most commonly used schema
language. Several tools exist to perform this translation where
appropriate.

A primary reason for using RELAX-NG was its intuitive
and readable “compact” syntax.2 Because some readers may
not be familiar with this syntax, a brief summary follows. Al-
lowed elements and attributes are prefixed with the keyword
’element’ and ’attribute’, with their datatype enclosed in {curly
braces}. Maximum and minimum number of repetitions given
with familiar regular-expression symbols of ’?’ for zero or 1,
’*’ for zero or more, and ’+’ for one or more. Elements and
attributes can be joined by either a ’,’ indicating sequence, a
’&’ indicating an unordered group, or a ’|’ indicating a choice.
Arbitrary groups of the above patterns can be assigned a name
using the ’=’ operator.

3.1.1 NM-WG Base Schema

The major components of base schema are illustrated in Fig-
ure 1. In this figure, the major sections, data and metadata, are
shown side-by-side with the subsections listed vertically within
each section.

Figure 1. NM-WG Base Schema

2A Similar syntax summary of XML Schema would almost certainly oc-
cupy several pages.

The schema for the top-level message envelope is shown be-
low.3 The message envelope may contain multiple metadata
and data sections. The message “type” allows distinguishing
between storage and query, for example, when the underlying
communication system may not provide such information.

namespace nmwg =
"http://ggf.org/ns/nmwg/2.0/"

element nmwg:message {
attribute type { xsd:string } &
(Metadata | Data)+

}

The schema for the Metadata element is shown below. Ev-
ery metadata element must contain an “id” and may contain
an optional “metadataIdRef” (formerly “metdataId”), which
refers to another metadata section. This is to allow the Meta-
data elements to be “linked” for further reduction in storage
overhead.

The metadata section is subdivided into three parts, only the
first of which is required:

• Subject – The physical or logical entity being described.
For example, a host pair or router address. Like the subject
of the sentence: Host A to Host B measured ICMP latency
is 100ms.

• EventType – The canonical name of the aspect of the sub-
ject being measured, or the actual event (i.e. “characteris-
tic”) being sought. Like the object of the sentence: Host
A to Host B measured ICMP latency is 100ms.

• Parameters – The way in which the description is being
gathered or performed. For example, command-line argu-
ments to traceroute or whether the round-trip delay packet
used ICMP or UDP. Like the descriptive clause of the sen-
tence: When you use 100 byte packets, Host A to Host B
ICMP latency is 100ms.

namespace nmwg = "http://ggf.org/ns/nmwg/2.0/"

Metadata =
element nmwg:metadata {
attribute id { xsd:string } &
attribute metadataIdRef { xsd:string }? &
Subject &
EventType? &
Parameters?

}

Subject =
element nmwg:subject {
attribute id { xsd:string }

}

EventType =
element nmwg:eventType {
text?

}

Parameters =
element nmwg:parameters {
attribute id { xsd:string }

}

3In all the schemas presented inline, some small details have been left out
or modified to enhance readability. Full schemas are available at [26]

The metadata schema would validate the XML instance be-
low. As in this example, the actual value of something with an
identifier can be omitted for efficiency where it is provided by
other context.

<nmwg:metadata id="1">
<subject id="2"/>
<nmwg:eventType>latency.oneway</nmwg:eventType>

</nmwg:metadata>

The schema for the data section is shown below.

namespace nmwg = "http://ggf.org/ns/nmwg/2.0/"

Data =
element nmwg:data {
element id { xsd:string } &
element metadataIdRef { xsd:string } &
(
CommonTime? &
Datum*

)
}

CommonTime =
element nmwg:commonTime {
Time &
Datum*

}
Datum =

Time
}

Time is fundamental to network measurements, and is the
only required part of each datum. The ’CommonTime’ section
allows the common case of factoring out a set of data that is
associated with a single time range or timestamp. Note that
by extending the EventType of the name into the namespace,
effectively creating a unique name for each type of event, the
timestamp may be all that is necessary.

Time-related elements reside in a sub-namespace from the
base. This separation makes the time definition more portable,
for re-use in extension namespaces. It also adds flexibility, al-
lowing the time representation to change independently of the
base namespace. The schema for the time namespace is shown
below.

namespace nmtm =
"http://ggf.org/ns/nmwg/time/2.0/"

Time =
element nmtm:time {
attribute type { xsd:string } &
(
TimeStamp |
(
StartTime &
(
EndTime |
attribute duration { xsd:string }

)
)

)
}

StartTime =
element nmtm:start {
attribute type { token } &
attribute inclusive { token }? &
TimeStamp

}

EndTime =
element nmtm:end {
attribute type { token } &

attribute inclusive { token }? &
TimeStamp

}

TimeStamp =
attribute value { xsd:string } |
element nmtm:value { xsd:string }

3.1.2 Schema Extension

The abstract schema will be extended to represent the data re-
turned from actual measurements. We use XML namespaces
to allow independent extensions of the schema to co-exist with-
out central coordination or “vetting”. A namespace is a specific
Uniform Resource Identifier (URI) that is similar to a Uniform
Resource Location (URL) resembling the well known format
http://www.domain.org.

The basic approach is to replace the base schema’s elements
with elements of the same name, but in the namespace of a
specific organization. For example, if members of a school’s
computer science department create a new schema, it should
be referred to as a subset of a domain they have access to, i.e.
http://cis.udel.edu/ns/new/tool/1.0/.

In addition, the namespace construct can represent different
versions of the same tool, or different schema versions through
the implicit naming scheme. This feature fosters ease of tran-
sition between extension namespaces in the face of changing
tools and measurements.

Building on the base schema section above, we present a
subset of the interface utilization schema used in our imple-
mentation. This schema is capable of describing the specifics of
a network interface, although for testing purposes the schema
remains relatively simple in relation to “real-world” needs.

namespace utilization =
"http://ggf.org/ns/nmwg/characteristic/util/1.0/"

namespace nmwgt =
"http://ggf.org/ns/nmwg/topology/2.0/"

include "nmbase.rnc" {
Subject = UtilizationSubject

}

UtilizationSubject =
element utilization:subject {
attribute id { xsd:string } &
Interface?

}

Interface =
element nmwgt:interface {
element nmwgt:ipAddress { {
xsd:string &

attribute type { xsd:string }
}? &
element nmwgt:hostName { xsd:string }? &
element nmwgt:ifIndex { xsd:string }? &
element nmwgt:type { xsd:string }? &
element nmwgt:direction { xsd:string }?

}

The schema would validate for an XML instance such as
this:

<nmwg:metadata id="1">
<utilization:subject id="2">
<nmwgt:interface>

<nmwgt:ipAddress type="v4">
128.4.133.163

</nmwgt:ipAddress>
<nmwgt:hostName>
moonshine.pc.cis.udel.edu

</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>

</nmwgt:interface>
</utilization:subject>
<nmwg:eventType>ifInOctets</nmwg:eventType>

</nmwg:metadata>

This extension schema, and subsequent example instance
documents, make up the first part of our framework. Construct-
ing tooling to accept, parse, and extract meaning from these
instances is addressed in the next section.

3.2 System Design

The storage and exchange format defined previously forms
the basis for the service we present. Input and output to the
service consists of messages containing varying amounts of in-
formation. With this requirement well defined, we must ac-
complish the goals of physically sending each message across
a transport medium, parsing useful information from the tran-
sient messages, and performing the “task” assigned to each
message. Our service chooses to implement the tasks of “stor-
age” (accepting data to store internally) and “request” (return-
ing data for a known pattern). The following sections lay out
general solutions to the issues at hand. Specifics to our archi-
tecture will be featured in Section 4.

3.2.1 Message Transport

Interoperability with existing technologies is always a consid-
eration when designing new software for the Grid. Creating
a proprietary encapsulation and transmission protocol would
not benefit the community. An obvious choice for transmission
of application layer messages is SOAP. Care was taken when
designing our SOAP bindings, specifically to the message en-
coding format. One must proceed cautiously, as there are only
four acceptable ways to accomplish the same goal. These four
choices arise from two independent choices: “RPC” or “docu-
ment” structure, and “literal” or “encoded” XML.

To construct a message it is necessary to choose a struc-
ture and an encoding. A description of each is well beyond the
scope of this paper; for our purposes, we consider the two most
common methods: RPC-Encoded and Document-Literal.

As suggested by the name RPC-Encoded, the abbreviation
“RPC” indicates a remote procedure call, and the word “en-
coded” refers to the use of a specialized set of XML types de-
signed to represent programming language constructs such as
arrays and directed graphs – structures that are not fully repre-
sentable in XML Schema languages. For this and other reasons
RPC-Encoded is on its way out due to interoperability issues in
many cases.

Document-Literal places all the structure for the message
(the whole “document”) in the same place (the schema defini-
tion) as is; this method is thought to be a “cleaner” and sim-

pler approach. For interoperability and simplicity Document-
Literal is the best approach to start with. However, many toolk-
its, particularly ones that focus on simple client-side APIs, sup-
port only the older RPC-Encoded style.

3.2.2 XML Parsing

SOAP messages themselves are constructed with XML, and
when using the Document-Literal format, contain our verbatim
message. A natural thought progression leads to the suggestion
of bypassing all “official” SOAP parsing software on the client
and server ends in favor of creating a custom parser to handle
our message format, as well as the additional SOAP tags. This
saves the step of needing two rounds of parsing on the same
data.

Our experiences have led us to settle upon classic parsing
implementations of well known parsing APIs; the Document
Object Model (DOM) [33] implemented in Perl [18] and a vari-
ant of the SAX [21] API, cElementtree [7], in Python [19].
Perl’s implementation of DOM, for example, features a “doc-
ument oriented” way of dealing with an XML instance. Ef-
ficiency is not a strong suit of DOM, because the entire doc-
ument must be loaded into main memory upon parsing. As
the document size grows, performance will certainly suffer. In
sharp contrast, the Python cElementtree XML parsing library
features an iterative parser that, like SAX, can process XML
documents in a streaming fashion, retaining in memory only
the most recently examined parts of the tree [14]. Streaming
approaches are, of course, much more efficient for large XML
documents

3.2.3 Information Storage and Retrieval

Back-end storage is an important consideration in any system.
Speed of insertion and searching can easily become a bottle-
neck in high demand systems. Three basic options exist for
storage: Relational database, XML database, flat file storage.

Relational databases features a well known and easily pro-
grammable interface, reasonable performance, and wide accep-
tance. Finding API bindings for the major database vendors is
a simple task, and all major operating systems support some
form of RDBMS. XML databases are an emerging technology
that support the insertion and ability to index based on XML
elements. At the present time there are few offerings from this
realm and bindings exist only for a handful of languages. Flat
files are of course an easy and accessible solution, but will re-
quire programmatic intervention to monitor and keep track of
the location of specific information.

Future incarnations of our framework will no doubt explore
these new technologies directly, and may utilize a hybrid ap-
proach as demonstrated with our XML evaluation. Utilizing a
single RDBMS makes sense from both an interoperability and
performance standpoint at this current point in time.

4 Implementation

Driven by the analysis in the previous section we have
implemented a client/server architecture capable of storing
and delivering XML messages conforming to the NM-WG
schemas. Figure 2 describes the conceptual design of our mea-
surement framework. We have implemented both the client and
server portions and have utilized the service to exchange inter-
face utilization data.

Figure 2. Framework Overview

4.1 Server

The server was implemented in the Perl programming lan-
guage. Perl features rich APIs for XML parsing, SOAP opera-
tions, and HTTP server capabilities. As stated in the previous
section, support for Document-Literal is limited in most im-
plementations, and Perl is no exception. A customized HTTP
server was implemented for the receipt and transmission of
SOAP messages. SOAP libraries were used for the sole pur-
pose of creating envelopes to send data between components.

XML processing on the server side consists of extracting the
message from the SOAP envelope, and using DOM to parse
the metadata blocks and related data blocks (in the case the
message is meant to store information). Request messages are
understood to contain no reference to data, so metadata alone
is extracted. Information is gathered and formed into SQL
statements (“insert” statements when we are storing data, and
“select” statements for queries). When requesting information
the database will return relevant results which are encoded into
XML before being sent back to client applications.

4.1.1 Database

The MySQL database management system was utilized in this
work. This database was chosen for its efficiency, size, and
API interaction. A single table, wherein each row storing both
metadata and data was constructed. Although this method con-
sumes more storage space, we avoid the need to join multiple
tables in the case of a query. Arbitrarily large XML dataset
requirements may force future versions to implement multiple
tables within the database.

The consideration of other storage technologies, such as
XML and Object Oriented databases, are beyond the scope of
this project. Future work will no doubt focus on the nuances of
storage within the system in hopes of achieving better overall
system performance.

4.2 Client

Client applications must have the capability to create XML
messages in the NM-WG format, wrap these messages in
SOAP envelopes, and contact a known server. The response
from the server will also be in XML format; parsing software
must be employed to extract meaning. Two clients have been
constructed thus far; one implemented in Perl, the other in
Python. Each client is interoperable with the Perl server.

4.2.1 Perl Implementation

As described in the Perl server, the Perl client uses the same
basic SOAP and parsing operations. The client does not need
to implement an entire HTTP server, but must send its XML
message through a socket to the known address of the server.
A response is also accepted through the socket. After receipt
it is parsed for meaning and can be displayed, or the output
may be funneled to a variety of other applications. For ex-
ample, [25] uses interface utilization information to construct
network “weathermaps” (graphical representation of network
utilization) as well as utilization graphs over a time range.

4.2.2 Python Implementation

For efficiency, the Python implementation uses a mostly hand-
rolled Web Services stack that is a combination of Frederick
Lundh’s cElementtree XML parsing library [7], and the stan-
dard Python HTTP library. The implementation is simplified
in several ways, but as a result the entire web service stack was
implemented in only a few hundred lines of code. Even though
Python is a compact language, typical SOAP libraries still run
in the thousands of lines. With elementtree, serialization and
parsing are both incremental, and therefore memory usage is
minimal.

5 Experimental Results

To test the performance of this framework we present tests
of the Perl and Python client applications requesting datasets
of various sizes from the server. A control test has also been
designed to request the same data sets but through simple SQL
requests directly to the database server (thus lacking all XML
processing steps).

We performed this experiment over a wide-area network
connection between Lawrence Berkeley National Labora-
tory (LBNL) and the University of Delaware (UD). The la-
tency on this path was approximately 75 milliseconds, and
the (TCP) bandwidth as measured by iperf [11] was about

30Mbits/second. The client host, at LBNL, was a 2GHz single-
processor AMD Athlon XP 2400+; the server host, at UD con-
tains dual 2.40GHz Intel Xeon processors. Both systems are
running Debian [6] linux with a 2.6 kernel. The server is run-
ning a single database for these tests (MySQL version 12.22) as
we aim to show the relative performance in a controlled envi-
ronment. Future considerations will be given to various storage
techniques besides that of typical relational databases.

Each implementation performed the same 5 different-sized
queries, returning result sizes from 1 to 10, 000, with three vari-
ations on each asking for information from 1, 2, or 3 router in-
terfaces. Thus, the total amount of data returned ranged from
1 to 30, 000 items. Each of these (15) different queries was
repeated 5 times.

log num. results

lo
g

qu
er

y
tim

e(
s)

10^1 10^2 10^3 10^4

10^−0.5

10^0.0

10^0.5

10^1.0 perl

python

sql

Figure 3. Query Size vs. Query Execution Time

Figure 3 exhibits the query performance of all three clients,
for the three-interface variation of the query only. Analysis
revealed an almost identical pattern of results for one and two
interfaces. In each case, the SQL client was surprisingly slower
than both the Perl and Python implementation for smaller num-
bers of results, becoming comparable for result sets in the hun-
dreds and then becoming the fastest for thousands of returned
items. In other words, the SQL implementation is shifted up-
wards but with a flatter slope, which indicates additional per-
query setup time. This pattern is more pronounced with 2
and 3 interface queries, partially because the SQL implementa-
tion performed separate queries for each interface, whereas the
NM-WG schemas naturally carried multiple metadata sections

(with a query of an interface in each) in a single envelope. The
smooth lines are calculated with Friedman’s “super-smoother”
algorithm [27]

The percent overhead, pictured in Figure 4, illustrates the
“crossover” point between SQL and the XML implementations
more dramatically, partially because it is a log-normal scale
whereas the previous graph used a log-log scale (to help show
the linear growth of query time vs. results). Previous graphs
demonstrated that there was very little variation within a set
of repeated measurements and that the pattern of query times
is very similar across the number of interfaces being queried.
Therefore, we can compare the medians of the times for a given
total number of results (number of results * number of inter-
faces) to derive the percent overhead for Python and Perl rela-
tive to SQL. Again we use the “super-smoother” to help reveal
the pattern of the results.

num. results

%
 o

ve
rh

ea
d

10^0 10^1 10^2 10^3 10^4

−50

0

50

100

150

200
perl

pyt

Figure 4. Overhead of Perl and Python relative
to direct SQL interaction

5.1 Analysis

The unusually poor times demonstrated by the SQL client
can of course be avoided. Experimental considerations man-
dated “equal-footing” for the definition of database queries.
The SQL client essentially performs the same queries that a re-
quest encoded with a metadata block would invoke, and there
is no ability to streamline many requests in a single statement
executed across the WAN.

The performance gap between the Perl and Python imple-
mentations can be attributed to parsing technology. The DOM
implementation of Perl requires significant memory, more so
than parsers capable of reading directly from a stream, such as

cElementtree in Python. Keeping a structure containing large
result messages in limited memory space will inevitably per-
form more poorly than processing the message as a stream.

6 Related Work

In [2], the notion of a scalable system that enables the shar-
ing of measurements was explored. The focal point of this work
revolved around the sharing of entire experiments; we present
our system in terms of individual measurements independent
of specific experimental work. Overall our work shares the
common idea of striving to make diverse measurements avail-
able, although our approach through the utilization of the NM-
WG schemas offers a uniform storage and exchange mecha-
nism; this simplifies the client and server interaction as well as
database requirements. As this work did not produce a proto-
type, performance comparisons are not possible.

The IETF IPPM Working Group [12] aims to define metrics
that will be used to describe various internet data delivery ser-
vices and techniques. Recent work has been done within the
group to develop a registry [13]. Similarly, we plan to con-
struct a repository for the registration and storage of schema
definitions that build upon the NM-WG base schemas.

The CAIDA [3] effort is focused on the collection, analysis,
and dissemination of internet measurements. CAIDA estab-
lished an “Internet Tools Taxonomy” [5] to aid in the definition
and categorization of measurement tools that could be quite
useful as a basis of the namespaces used in this system. Our
future plans include incorporation of this taxonomy into the
GGF namespace. Additionally CAIDA has begun to archive
and share network measurements and is developing a schema
for that effort [4].

The work we present here is unique in our early adoption of
NM-WG schemas as well as the emphasis we place on system
performance. These two characteristics lead to a scalable sys-
tem in two ways: the system can scale to managing many data
sets and handling numerous requests, additionally it is able to
scale to the development of new and diverse measurements as
defined by the NM-WG.

It is true that the approach of splitting data and metadata into
tractable units is not new due to the breadth of work done by
others in this field. We contend that in the world of web ser-
vices, and more specifically the Grid, this technique is often not
pursued. This attempt has shown that not only can it be done
properly, the relative efficiency of the approach will guarantee
performance and scalability.

7 Conclusion

We have presented a framework capable of storing and
delivering network measurements.This framework separates
metadata from data, providing a normalized and efficient
means for transmitting and storing many measurements. We
have shown how this approach promotes efficient and inter-

operable systems for exchanging performance information in
Grid environments.

Our approach allows full use of the Web Services separation
between schematic representation of the data and the transport
protocols used to send it between parties. This allows the ef-
ficiency of data/metadata separation to be augmented, where
desired, by efficient and appropriate wire formats.

Our framework features good performance compared to that
of common ad-hoc solutions, despite needing to send and parse
XML documents of various sizes and levels of complexity.

8 Acknowledgments

The authors would like to extend thanks to the members
of the Global Grid Forum’s Network Measurement Working
Group. Without their encouragement and insight this work
would not have been possible.

References

[1] Network Performance Advisor. http://dast.nlanr.
net/Projects/Advisor/.

[2] M. Allman, E. Blanron, and W. Eddy. A scalable system for
sharing Internet measurement. In Passive and Active Measure-
ment (PAM), March 2002.

[3] Cooperative Association for Internet Data Analysis. http://
www.caida.org/.

[4] ISMA Data Catalog 2004 Workshop. http://www.caida.
org/outreach/isma/0406/index.xml.

[5] CAIDA internet tools taxonomy. http://www.caida.
org/tools/taxonomy/.

[6] Debian Linux. http://www.debian.org/.
[7] The cElementTree Module. http://effbot.org/zone/

celementtree.htm.
[8] Global Grid Forum. http://www.ggf.org.
[9] GLUE Schema. http://www.globus.org/toolkit/

mds/glueschemalink.html.
[10] INCA Test Harness and Reporting Framework. http://

inca.sdsc.edu/.
[11] Iperf. http://dast.nlanr.net/Projects/Iperf/.
[12] IETF - IP Performance Metrics (IPPM). http://www.

advanced.org/IPPM/.
[13] IETF - IP Performance Metrics Registry).

http://tools.ietf.org/wg/ippm/
draft-ietf-ippm-metrics-registry/.

[14] The ElementTree iterparse Function. http://effbot.
org/zone/element-iterparse.htm.

[15] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones,
T. Kielmann, and M. Swany. A Hierarchy of Network
Performance Characteristics for Grid Applications and Ser-
vices. Community practice, Global Grid Forum, June 2003.
http://nmwg.internet2.edu.

[16] Network Measurements Working Group (NM-WG). http://
nmwg.internet2.edu.

[17] Performance focused Service Oriented Network monitoring
ARchitecture. http://monstera.man.poznan.pl/
wiki/index.php/Main Page.

[18] Perl. http://www.perl.com/.

[19] The Python Programming Language. http://www.
python.org/.

[20] RELAX-NG. http://www.relaxng.org/.
[21] Simple API for XML. http://www.saxproject.org/.
[22] Stanford Linear Accelerator Center. http://www.slac.

stanford.edu/.
[23] RFC 1157, A Simple Network Management Protocol. http:

//www.ietf.org/rfc/rfc1157.txt.
[24] SOAP Specifications. http://www.w3.org/TR/soap/.
[25] StorCloud. http://www.vtksolutions.com/

StorCloud/2005/.
[26] NM-WG schema and prototype repository. http://stout.

pc.cis.ude.edu/NWMG/.
[27] Friedman’s SuperSmoother. http://www.maths.lth.

se/help/R/.R/library/modreg/html/supsmu.
html.

[28] World Wide Web Consortium. http://www.w3.org/.
[29] Web Services. http://www.w3.org/2002/ws/.
[30] Web Services Notification. http://www.oasis-open.

org/committees/tc home.php?wg abbrev=wsn.
[31] Extensible Markup Language. http://www.w3.org/

XML/.
[32] XML Schema language. http://www.w3.org/XML/

Schema.
[33] Document Object Model. http://www.w3.org/DOM/.

