
Characterizing the Impact of End-System Affinities On the
End-to-End Performance of High-Speed Flows

Nathan Hanford1, Vishal Ahuja1, Mehmet Balman2, Matthew K. Farrens1, Dipak Ghosal1,
Eric Pouyoul2 and Brian Tierney2

1 Department of Computer Science, University of California, Davis, CA,
{nhanford, vahuja, mkfarrens,dghosal}@ucdavis.edu

2 ESnet, Lawrence Berkeley Laboratory, Berkeley, CA,
{mbalman,epouyoul,bltierney}@lbl.gov

ABSTRACT
Multi-core end-systems use Receive Side Scaling (RSS) to
parallelize protocol processing. RSS uses a hash function on
the standard flow descriptors and an indirection table to as-
sign incoming packets to receive queues which are pinned to
specific cores. This ensures flow affinity in that the interrupt
processing of all packets belonging to a specific flow is pro-
cessed by the same core. A key limitation of standard RSS
is that it does not consider the application process that con-
sumes the incoming data in determining the flow affinity.
In this paper, we carry out a detailed experimental anal-
ysis of the performance impact of the application affinity
in a 40 Gbps testbed network with a dual hexa-core end-
system. We show, contrary to conventional wisdom, that
when the application process and the flow are affinitized to
the same core, the performance (measured in terms of end-
to-end TCP throughput) is significantly lower than the line
rate. Near line rate performance is observed when the flow
and the application process are affinitized to different cores
belonging to the same socket. Furthermore, affinitizing the
application and the flow to cores on different sockets results
in significantly lower throughput than the line rate. These
results arise due to the memory bottleneck, which is demon-
strated using preliminary correlational data on the cache hit
rate in the core that services the application process.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.4 [Distributed Systems]: Client/server;
C.2.5 [Local and Wide-Area Networks]: Internet (e.g.,
TCP/IP); C.2.m [Miscellaneous]: Network performance
analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
NDM’13 November 17, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2522-6/13/11...$15.00.
http://dx.doi.org/10.1145/2534695.2534697

Keywords
40 Gbps network, ESnet, multi-core affinization, end-system
performance, high-speed network, flow affinity, application
affinity, RPS, RFS

1. INTRODUCTION
The network speed is continuing to grow; 10 Gbps Network
Interface Cards (NICs) are common now, 40 Gbps NICs are
available and a standard for 100 Gbps has already been ap-
proved. However, for a variety of reasons CPU clock frequen-
cies have plateaued, and major technological breakthroughs
will be required for them to get much above 3.5 GHz. Be-
cause of this widening gap between the link speed and the
CPU clock frequency, it is becoming increasingly difficult for
a single core to keep up with the high speed link rates (using
current protocols and end-system architectures).

Computer architects have compensated for the fact that
CPU clock frequencies are no longer increasing by putting
multiple processor cores on each die. To exploit the availabil-
ity of these cores, NICs are now equipped with multi-queue
support, which enables parallelization of network processing
across the cores. Unfortunately, the use of multi-queue NICs
is not a magic bullet. For example, they do not provide any
benefit to a single (TCP or UDP) high speed flow, because
the kernel avoids distributing the packet processing of a sin-
gle flow across multiple cores (since packet reordering is a
very expensive operation).

Research shows [1] that the benefit of having multiple cores
is nullified if the end-to-end flows do not take into account
various affinities, particularly between the process that per-
forms protocol processing of a packet and the application
process that consumes the packet. For example, instead of
using cores arbitrarily, it is better to have the core that is
doing protocol/interrupt processing share the highest level
cache with the core doing the application processing. This
allows for fewer context switches and improved cache behav-
ior.

In this paper, we carry out a detailed analysis of the per-
formance impact of application affinity in multi-core end-
systems. The experiments were performed on the 40 Gbps

ESNet testbed [19] using netperf with the sendfile option to
ensure that the sender is not the bottleneck. Two commod-
ity x86 end-systems assembled from ”off the shelf” compo-
nents were connected via dedicated circuits with a round trip
delay of 95 ms. We show, contrary to conventional wisdom,
that when the application process and the flow are affinitized
to (run on) the same core, the performance (measured in
terms of end-to-end TCP throughput) is significantly lower
than the line rate; in the worst case the achieved throughput
is approximately half (about 22 Gbps). When the flow and
the application are affinitized to different cores within the
same socket, we can achieve approximately 35 Gbps. Fi-
nally, affinitizing the application and the flow to cores on
different sockets also results in significantly lower through-
put than the line rate approximately 26 Gbps. We looked
the L3-cache hit rate for the core that services the applica-
tion process, and found that the differences in the cache hit
rate to a large extent corroborate the throughput data.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review the related work. In Section 3, we review
the various types of affinities that are important in process-
ing a high-speed in a multi-core end-system. In Section 4
we describe the testbed on which the experiments were car-
ried out. In Section 5, we present the results. Finally, in
Section 6, we conclude with a discussion of the next steps.

2. RELATED WORK
Internet characterization using analytical modeling, simu-
lation, and empirical measurements has received a lot of
attention.Many researchers have modeled high speed traffic
(such as video) on wireless networks [21, 8] or using dedi-
cated custom interconnects in multicores [22]. But very few
studies have investigated the impact of high speed traffic on
end-hosts, especially when they are connected using dedi-
cated networks. The receive livelock phenomena, wherein
a machine spends all its cycles in hard and soft interrupt
contexts, was first reported by Mogul et al [17]. They found
that when a machine enters the receive livelock state, most
of the packets are dropped, and no forward progress is made.
As a consequence, NAPI [24] and NIC interrupt throttling
are enabled by default in most of the kernels and NICs, re-
spectively. A NAPI enabled kernel is helpful because it does
not operate in a purely interrupt-driven mode - at low data
rates, interrupts are enabled, while at high data rates the
kernel switches to polling. Marian et al [16, 15] character-
ized packet loss and bandwidth degradation for end-systems
connected over a lambda network, and in [2] it is shown
that a lightly loaded 10 Gbps WAN can transform a slow
and steady flow into a bursty flow. This means the receiv-
ing end-system has to cope with a bursty flow at 10 Gbps,
which leads to packet losses in the end-system, and degraded
performance.

The design focus for commodity end-systems is on CPU and
memory intensive applications, since that is where the ma-
jority of the processor time is spent. In general, I/O in com-
modity end-systems does not get a lot of attention, and as
a result these systems are inefficient for network processing.
In [13], it was found that the receive side network processing
for 10 Gbps Ethernet could easily overwhelm two cores of
an Intel Xeon Quad Core processor.

Apart from this fundamental mismatch, the key barrier to
running high speed networking applications on commodity
multi-core systems is the memory stalls that are incurred
during packet processing [15]. A lot of research has been
performed related to trying to improve network I/O per-
formance by mitigating the memory stalls [7, 11, 12, 14].
However, in [10] it was clearly demonstrated that such tech-
niques do not offer any benefit for single flows, because the
performance is CPU limited. In the same paper, it was
also shown that cache affinity should be taken into account
in order to benefit from these techniques. In particular, it
was shown that if affinity is taken into account, a standard
LINUX network stack runs 32% faster for various I/O sizes.

Receive-side Scaling (RSS) is designed to allow uniform per-
formance increase. NICs apply a filter and send packets to
different queues. That enables packets from each flow to be
sent to separate receive queue [23]. As a results, packet pro-
cessing is distributed among different CPUs. Receive Packet
Steering (RPS) is essentially a simplified RSS, done in soft-
ware (i.e., what the NIC does with the on-board RSS tables
and interrupts and DMA queues is done in RPS using ex-
tra linked-lists in the host memory). Since it is in software,
it is necessarily called later in the datapath - thus, while
RSS selects the queue and hence the CPU that will run the
hardware interrupt handler, RPS selects the CPU which will
perform protocol processing above the interrupt handler.

Optimizations like RSS [20], RFS [5], and RPS [6] are not
able to achieve high throughput even when using multiple
parallel flows. What is needed is an approach which pro-
vides a more informed usage of cores within a multi-core
system when doing network processing [1]. Cores should
not be chosen arbitrarily, but rather cores should be chosen
that share the lowest possible level of the cache structure1.
For example, when a given core (e.g. core A) is selected to
do the protocol/interrupt processing, the core that shares
the L2 cache with core A should execute the correspond-
ing user-level application. Doing so will lead to fewer con-
text switches, improved cache performance, and ultimately
higher overall throughput.

Irqbalance scatters interrupts across cores based on the load
statistics. In one sense, Irqbalance is a variant of round-
robin scheduling. Foong et al [4] and Narayanswamy et al
[18] have analyzed the effect of processor affinity on network-
ing performance of multicore systems. They demonstrated
the limitation of Irqbalance and the benefit of RSS. In [9], a
cache aware scheduling mechanism was proposed, but their
focus was on processor utilization rather than performance.
Their scheme works only for TCP and requires modification
at the kernel level. In [25], a different design for the network
stack has been proposed which offloads the network stack
processing to a dedicated core. In this way, it eliminates the
unnecessary sharing of network state among multiple cores.

With the advent of techniques like Direct Cache Access(DCA),
processor affinity has become very important. Using the
LINUX system call interface, a user-space process can affini-
tize itself to a certain CPU. However, the socket interface

1In this document we consider the L1 cache to be at a lower
level (closer to the core) than the L2 cache, L2 lower than
L3, etc.

does not provide any information regarding which CPU to
choose. The default operation of the kernel scheduler is that
it dynamically chooses the CPU on which the user-space pro-
cess will run, and can potentially migrate the process to a
different CPU altogether.

3. PACKET PROCESSING IN MULTI-CORE
END-SYSTEMS AND RELATED AFFINI-
TIES

A NIC performs the following tasks when a new packet is
received [27]: 1) the symbol stream is read off the physi-
cal medium; 2) clock recovery is performed, and the data
is unscrambled to decode the 64b/66b line encoding; 3) the
Ethernet frames are assembled and placed in the on-board
memory (used as a FIFO). An Ethernet frame is dropped
if its frame check sequence (CRC32) is incorrect - other-
wise, frames are transferred to the host memory using Direct
Memory Access (DMA), and the corresponding packet de-
scriptors are stored in the receive ring buffer. This transfer
can fail if the system bus does not have the required band-
width, or if the receiving end-system is not able to cope with
the high incoming data rate.

If the DMA fails, the packet can remain in the on-board
memory if there is room; if not, it is dropped. It is impor-
tant to note that modern NICs are fast enough to receive
packets at line rate, so when packets are lost it is because
of some shortcoming of the receiving end-system. Packets
which have been transferred to the memory are further pro-
cessed by various protocol handlers (e.g. IP, TCP) in the
kernel network stack. Using the 5-tuple flow identifier (des-
tination port number, destination IP address, source port
number, source IP address, and protocol), the user-space
application is identified, and after en-queueing the packets
into the corresponding socket buffer the user-space applica-
tion is awakened. A user-space application is allowed only
a limited amount of socket buffer space - when this limit is
reached, incoming packets are dropped.

Packet

Hash
Function

Hash Value

Indirection
Table

Flow
Descriptors

CPU 1 [Cores 6 – 11]

CPU 0 [Cores 0 - 5]]

Figure 1: Review of RSS.

For multi-core end-systems, NICs are currently equipped
with multi-queue support such as Receive Side Scaling (RSS)
[20], which allows parallelization of network processing across
multiple cores. Figure 1 shows the basic operation of RSS,
which supports multiple receive queues and uses a hashing
function and an indirection table to assign packets of the

same data flow to a single queue. Additionally, Message
Signal Interrupt (MSI/MSI-X) is used to assign a dedicated
interrupt to a queue, and flow-pinning support is used tie
an interrupt to a specific core.

The OS maintains, in the system memory, a ring buffer for
each receive queue. The following steps are taken when a
new packet arrives [28],

1. A hash function is applied to a flow identifier (typi-
cally, the 5 tuple consisting of the source and desti-
nation IP addresses, the source and destination port
numbers, and the protocol). The hash result is used
as an index to an indirection table to determine the
receive queue and hence the core that will perform the
protocol processing for the packet;

2. The NIC assigns the incoming packet to the corre-
sponding receive queue;

3. The NIC DMAs received packets from a receive queue
to the the corresponding ring buffer;

4. The NIC interrupts cores with nonempty queues. An
interrupted core performs the protocol processing of
the packets in the ring buffer.

3.1 Affinities
Based on the above description of the packet receive process,
we can define following types of affinities.

1. Flow Affinity: The goal of flow affinity is to ensure
that packets belonging to the same TCP/UDP flow
are processed by the same core. Since TCP is a state-
ful protocol, distributing the packet processing among
multiple cores has high overhead due to the need to
access shared data in memory, and other synchroniza-
tion overhead. Furthermore, since TCP guarantees in-
order delivery, data reordering by the application pro-
cess or by the kernel can also significantly tax the CPU
resources.

2. Interrupt Affinity: The goal of interrupt affinity
is to ensure that interrupts (network related or oth-
erwise) of the same type should be processed by the
same core. OS features such as IRQ balance, that re-
distribute interrupts (for example in round-robin fash-
ion to distribute interrupt load across the cores), have
poor performance and are often disabled.

3. Application Affinity: The goal of application affin-
ity is to ensure that the application process that con-
sumes the network data is bound to a particular core,
usually based on load-balancing. Considering the mod-
ern CPU topologies, there are a number of choices
where the user-space process may run with respect to
the network stack: 1) Same core: The user-space pro-
cess and the network stack process run on the same
core. 2) Hyperthread: The user-space process and the
network stack process run on peer hyperthreads of the
same core. 3) Peer Core: The user-space process and
network stack process run on different cores that share
the last level cache(LLC) (basically, two cores on the

same chip). 4) Different Chip: The user-space process
and network stack process run on cores that belong to
different chips.

4. Cache Affinity: The goal of cache affinity is to en-
sure that instead of using cores arbitrarily, cores should
share the lowest possible level cache: one core for pro-
tocol/interrupt processing, for example, and another
for application processing. This allows for fewer con-
text switches and improved cache behavior.

Considering only those interrupts that are related to packet
processing, flow affinity and interrupt affinity imply the same
thing. In this work we focus primarily on the relationship
between flow affinity and application affinity.

As pointed out in many papers (including [1] and [28]), while
RSS provides the ability to process receive packets belong-
ing to different flows in parallel, it cannot guarantee that a
flow will be directed to the same core (or some core with
cache affinity) on which its application thread resides. This
is because the NIC does not know the relationship between
the flow and the application that consumes that data. Fur-
thermore, in many NICs (such as the Mellanox NIC) the
hash function is computed in the hardware and cannot be
changed. The hash function operates on a four tuple which
consists of the source ip address, destination ip address,
source port, and destination port. As mentioned in [1], by
looking at the output of the hash function for different tu-
ples, it may be possible to select appropriate port numbers
that map the flow to the desired core.

4. EXPERIMENTAL TESTBED
Our performance analysis uses resources from ESnet’s 100G
Testbed 2, which includes a dedicated 100 Gbps link con-
necting the National Energy Research Scientific Computing
Center3 (NERSC) in Oakland, CA to StarLight4 in Chicago,
IL.

The ESnet Testbed, shown in Figure 2, is a public testbed
open to any researcher and includes high-speed hosts at both
NERSC and StarLight. The results presented in this paper
were collected using two 40 Gbps capable hosts (diskpt-6,7)
at NERSC. Each host has two 6-core Intel processors, 64GB
of system memory and 2 Mellanox 40G NICs. Each 40 Gbps
host is based on the Intel Sandy Bridge[3] architecture with
PCI Gen-3, supporting double the previous generation bus
capacity.

In order to evaluate performance over a high latency path,
we configured a 40 Gbps loop from Oakland to Chicago and
back. Traffic originating from a host interface at NERSC
would reach StarLight and then return to NERSC for a to-
tal RTT of 95ms. All of our tests were run along this loop-
back path unless where otherwise noted. There was no other
traffic on the path at the time of our testing.

The overall architecture is shown in Figure 3.

2ESnet 100G Testbed [19]
3National Energy Research Center http://www.nersc.gov
4StarLight: http://www.startap.net/starlight/

All of the hosts ran a 2.6.32-220 Linux kernel. We per-
formed standard host and NIC driver tuning to ensure the
best performance for each of our benchmarks5. The Maxi-
mum Transmission Unit (MTU) on each installed NIC was
set to 9000 bytes and Rx/Tx link layer flow control was en-
abled by default. Each of our experiments involved memory-
to-memory transfers to remove disk I/O as a potential bot-
tleneck. In this testbed nearly all host interfaces are con-
nected directly to high-end 100 Gbps Alcatel-Lucent Model
SR 7750 border routers, which have a large amount of buffer
space.

5. RESULTS
5.1 List of Key Parameters
A summary of the key system parameters that impact the
end-to-end performance is listed in Table 1.

5.2 Experimental Approach
The goal of our experimentation was to evaluate the per-
formance of a single TCP flow for a 40 Gbps data transfer
between two systems. TCP/IP remains the most popular
standard for file transfer and connection management on the
internet today, so it was our protocol stack of choice. The
software used to simulate the network load was netperf, and
it was used in the TCP SENDFILE configuration, which
triggers the zero-copy offload on the sending system in Cen-
tOS. We did this to create a situation where the receiver was
the bottleneck. In an average test, for example, the active
cores on the receiver would be at or near 100% utilization,
while the sender CPU would be under 30% utilization.

Netperf is a software tool for benchmarking network per-
formance. It works by keeping the time of the test con-
stant, but measuring the amount of data sent or received,
or the number of connections opened and closed. We used
the TCP SENDFILE option, in which the sending process
simply generates data and sends it using the sendfile() call
in the sockets API.

The System Under Test (SUT) was a standard CentOS im-
age provided by ESnet. The only modifications made to
the OS image we were provided were the installation of
the latest versions of tcpdump, libpcap, and Intel’s Per-
formance Counter Monitor for Sandy Bridge Architectures.
Hardware-wise, these systems are composed of dual Intel
Xeon E5-2667 6-core processors and 64GB of DDR3-1600
ECC Memory. Herein, we will be referring to the 6-core
packages as ”sockets” and the individual cores simply as
”cores.” The NIC is physically connected to Socket 1, and
the processors in this system come equipped with what is
referred to as the Intel QuickPath Interconnect, or QPI. In
the Sandy Bridge architecture, PCI slots are physically con-
nected to one socket. If an application on one socket re-
quires data from a device physically connected to another
socket, that data must traverse the QPI between the two
sockets. The QPI in our system has a maximum transfer
rate of 16 gigabytes per second. While we were unable to
test the throughput of the QPI due to the lack of accessi-
bility to the hardware counters in our system’s BIOS, we
have assumed for the purposes of this experiment that the

5Linux TCP tuning: http://fasterdata.es.net/host-
tuning/linux/

nersc-diskpt-2

Alcatel-
Lucent
100G

SR7750
Router

nersc-diskpt-3

nersc-diskpt-1

 4x10GE (MM)

 5x 10GE (MM)

star-mempt-2

star-mempt-1

NERSC

StarLight

Star-cr5
core router

 5x10GE (MM)

 4x10GE (MM)

100G

Alcatel-
Lucent
100G

SR7750
Router

 5x10GE (MM)

100G 100G

star-mempt-1 NICs:
4x10G Myricom
1x10G Mellanox

star-mempt-2 NICs:
2: 2x10G Myricom

nersc-diskpt-1 NICs:
4x10G Myricom
1x10G Mellanox

nersc-diskpt-2 NICs:
4x10G Myricom

nersc-diskpt-3 NICs:
4x10G Myricom
1x10G Mellanox

To Esnet
Production

Network

star-mempt-3

 5x10GE (MM)

star-mempt-3 NICs:
4x10G Myricom
1x10G Mellanox

nersc-diskpt-6

nersc-diskpt-7

 1x40GE

 1x40GE

nersc-diskpt-6 NICs:
2x40G Mellanox
1x10G Intel NetEffect
1x10G Mellanox

nersc-diskpt-7 NICs:
2x40G Mellanox
1x10G Intel NetEffect
1x10G Mellanox

2x10GE (MM)

2x10GE (MM)

100G

AofA

aofa-cr5
core router

100G (coming soon)
100G

100G

MANLAN
switch

To Esnet
Production

Network

Dedicated 100G Network

100G
To Europe

ESnet 100G Testbed

StarLight
100G

switch

100G

 1x40GE

Figure 2: The ESNET 100G test-bed.

Figure 3: The end-system architecture [26].

Parameter Value
MTU 9000 bytes
SKB Size Auto (up to 100MB)
RPS/RFS Off
irqbalance Off
netperf Version 2.6.0
Intel PCM Version 2.5.1
CentOS Linux Version 2.6.32-220.17.1.el6.x86 64
TCP congestion control algorithm TCP Cubic
tcpdump Version 4.4.0
libpcap Version 1.4.0

Table 1: List of parameters.

QPI was not a limiting factor, since the maximum transfer
rate is much faster than the memory transfer rate and the
network throughput. It should also be noted that Simulta-
neous Multithreading (HyperThreading) was turned off for
the duration of the tests. However, exhaustive tests with
HyperThreading on this architecture are underway.

The preliminary tests were to confirm that the tuning sug-
gestions and default configuration discussed by the ESnet
staff were best under our testing scenario. All of the rec-
ommendations were confirmed to be beneficial, including
turning off irqbalance and setting the MTU to 9000 bytes
(Jumbo Frames). Using the affinitization recommendations
of the ESnet staff, we were able to achieve a throughput of
about 36 Gbps, a number close enough to the line rate for us
to be convinced that the 4 Gbps not witnessed in the trans-
fer was due to protocol processing and TCP overhead. Once
this rate was reached, we ran different test lengths, to see if
the throughput would continue increasing for longer tests.
We found 180 seconds to be the point where the performance
decrease due to TCP slow start becomes negligible, and run-
ning longer tests does not generally yield greater throughput
numbers. Finally, we tested some of the parameters of our
system using the Performance Counter Monitor. Most no-
table are the memory throughput figures noted above, which
were obtained by several consecutive executions of the mem-
optest tool.

The main experiment took into account two types of affin-
ity as independent variables: Application and Flow Affinity.
The core binding of the receiving proces was application
Affinity. The core binding of the NIC queues was flow affin-
ity.0 We exhaustively tested each of the 144 combinations
of Application Affinity and Flow Affinity on our SUT. We
tracked the throughput and the L3 cache hit ratio for the
core that the netperf receiving process was bound to us-
ing the Performance Counter Monitor. We tracked the L3
cache hit ratio because this number effectively tells us how
little the application receiving core needed to access mem-
ory. These L3 cache hit ratios pertain only to cache requests
made by the core with the application receiving process, so
as to rule out cache misses on other cores due to other fac-
tors. The cores under test were also unloaded, so it can
be safely assumed that the vast majority of these cache re-
quests were due to the application receiving process. Finally,
the entire exhaustive test was repeated, to ensure that the
patterns were not anomalies. Furthermore, exhaustive pre-
liminary throughput testing was done on an image running

Fedora Core 17 with similar results.

5.3 Discussions of Results
Figure 4 and Figure 5 are based on the output of the ex-
haustive testing of every combination of affinity. The Flow
Affinity lies across the horizontal axis, and is the core that
all of the NIC queues have been bound to on the receiving
system. The Application Affinity lies on the vertical axis,
and is the core that the netperf receiving process has been
bound to. Each bubble in the throughput graph represents
the average throughput over a 180 second test. The area
of the bubble corresponds to the throughput in gigabits per
second. Each bubble in the L3 Cache Hit Ratio graph has
an area corresponding to the L3 cache hit ratio of the core
that the netperf receiving process resided on during the test.
Generally, it can be assumed that the larger the L3 Cache
Hit Ratio, the fewer times netperf had to go to memory to
retrieve its data. (However, there could be a caveat to this,
which we will discuss later.) The boxes represent the four
quadrants of the graph showing the socket combination used.
In the upper left quadrant, socket 0 has the Flow Affinity,
while socket 1 has the Application Affinity. The lower-right
quadrant represents the reverse. In the lower-left quadrant,
socket 0 has both the Flow and Application Affinity. In the
upper-right quadrant, socket 1 has the Flow and Application
Affinity.

During the exhaustive testing of every combination of Ap-
plication Affinity and Flow Affinity, we found that the con-
ventional wisdom of affinitizing both application and flow
to the same core produced poor throughput and mediocre
L3 Cache Hit ratios. Due to the reported CPU utilization
and the cache hit ratios, we believe that the low hit ratio
may be due to both protocol processing overhead and cache
pollution, with the L2 cache flooded with both application
data and network processing data. The low throughput is
most likely a result of competition for limited processing re-
sources between the kernel- and user-space processes. This
pattern can be observed in the charts below by observing
the diagonals, where both affinities reside on the same core.

Using cores on two different sockets also produced poor
throughput and poor L3 cache hit ratios. This can be ob-
served in the graphs by looking at the upper-left and lower-
right quadrants of the graph. We believe that this is due
to the use of memory as the first shared level of the mem-
ory hierarchy between the two sockets. In these instances,
the throughput is limited to the throughput of the memory

24.62

34.55

35.31

35.05

35.19

35.51

22.70

22.58

23.31

23.41

23.31

23.08

35.03

26.26

35.27

35.57

34.85

35.23

22.87

22.71

23.55

22.89

23.58

23.47

35.43

35.26

25.94

35.20

34.86

35.24

22.54

23.11

23.84

23.27

22.94

22.74

34.93

34.30

34.87

25.70

35.13

33.69

22.94

22.56

23.23

23.54

22.65

22.93

35.45

34.79

35.27

34.97

26.27

34.61

23.27

23.26

22.39

22.59

23.94

22.89

35.50

34.76

34.15

34.62

34.85

24.24

22.74

22.92

23.32

23.06

23.16

23.42

22.82

22.44

21.86

22.96

23.25

23.05

26.35

34.90

35.08

35.09

35.56

34.67

22.11

22.78

22.63

22.70

23.27

24.23

31.00

26.56

35.26

35.11

35.11

34.36

23.03

23.65

23.49

23.25

22.53

22.99

33.71

34.59

26.87

34.08

33.69

30.94

22.25

22.94

22.93

23.44

23.84

22.52

35.13

33.29

34.30

27.01

35.06

34.14

23.57

22.89

22.55

23.28

23.60

23.34

34.39

35.00

34.65

35.08

25.25

33.62

23.11

21.51

23.01

23.25

22.84

22.40

34.51

34.89

34.33

35.45

34.90

25.53

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

Ap
pl

ic
at

io
n

Af
fin

ity

Flow Affinity

Throughput (Gbps)

Figure 4: The achieved throughout as a function of the flow and application affinity.

as the network data must traverse memory from one socket
to another after the initial protocol processing. This data
does not flow across the QPI because the kernel and the
application are responsible for placing it.

Using different cores on the same socket produced the best
throughput. This can be observed in the upper-right and
lower-left quadrants of the graph. Keeping both affinities
on socket 1 (the socket that the NIC is physically connected
to over the PCI bus) produced the best L3 cache hit ratios.
Keeping both affinities on socket 0 produced mediocre L3
cache hit ratios. It would appear that these relatively low
L3 cache hit ratios have no bearing on the throughput. How-
ever, it is possible that the L3 cache hit ratios are a form of
statistical skew in this case, where the accesses over the QPI
are unaccounted for. Unlike in the previous case, network
data must move over the QPI in this case, since the NIC is
physically connected to the other socket.

As far as cache performance is concerned, the assignment
where the flow and application are affinitized to the same
core is ideal, according to previous research. But if we con-
sider the high incoming data rate, the cost of frequent con-
text switching will be very high. The network stack process

runs at a strictly higher priority than the user-space process,
and as a result, the user-space process will not have enough
CPU cycles to read the packets from its socket buffer, lead-
ing to packet loss. If hyperthreads are available, and the
CPU can fetch instructions from multiple threads simulta-
neously, then this option may be ideal. Hyperthreads can
reduce the cache misses beyond LLC because in the case
of packet processing they will be accessing shared data, i.e.
packets passed between the kernel process and the user pro-
cess. If hyperthreads do not access shared data, then they
would split all the shared caches in half, and yield no benefit.
As an alternate, the third option can also lead to reduced
LLC misses. The last option is certainly not desired because
it will lead to additional cache misses.

Further evidence of a clear pattern in throughput and cache
performance depending on affinity comes from the histograms
of the throughput and L3 cache hit ratios shown in Figure 6
and Figure 7.

Two distinct peaks can be seen in the throughput histogram:
one where the affinitization was sub-optimal, and one where
the affinitization was optimal. Similarly, three peaks can
be seen in the L3 cache hit ratio histogram. The lowest

0.61

0.66

0.60

0.60

0.60

0.60

0.50

0.50

0.52

0.50

0.50

0.50

0.59

0.58

0.59

0.61

0.59

0.60

0.50

0.50

0.50

0.50

0.51

0.50

0.59

0.59

0.60

0.60

0.59

0.59

0.49

0.50

0.51

0.51

0.49

0.51

0.59

0.59

0.59

0.60

0.59

0.59

0.51

0.50

0.52

0.51

0.50

0.50

0.59

0.60

0.60

0.59

0.59

0.59

0.50

0.50

0.50

0.50

0.50

0.50

0.59

0.60

0.60

0.60

0.60

0.60

0.51

0.51

0.50

0.51

0.50

0.50

0.53

0.51

0.53

0.53

0.52

0.52

0.60

0.90

0.90

0.90

0.90

0.90

0.52

0.52

0.52

0.53

0.53

0.52

0.89

0.60

0.88

0.89

0.90

0.90

0.52

0.53

0.52

0.53

0.51

0.52

0.89

0.89

0.60

0.90

0.90

0.90

0.53

0.52

0.52

0.53

0.52

0.52

0.90

0.89

0.89

0.60

0.90

0.89

0.52

0.52

0.53

0.53

0.52

0.52

0.90

0.89

0.89

0.89

0.59

0.89

0.53

0.52

0.52

0.53

0.52

0.52

0.90

0.90

0.90

0.89

0.90

0.64

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

Ap
pl

ic
at

io
n

Af
fin

ity

Flow Affinity

L3 Cache Hit Ratio

Figure 5: The L3 cache hit ratio for the core that services the application for different flow and application affinity.

peak represents configurations where the network data was
passed through memory. The middle peak represents config-
urations where both processes shared a core, and when both
processes were affinitized to socket 0. The highest peak rep-
resents configurations where both processes were affinitized
to socket 1. Evidence of a pattern comes from the fact that
these very similar throughput and cache hit ratio numbers
came up many times during testing.

6. CONCLUSION
One of the most important conclusions of this research is
that any system attempting to direct a large transfer to a
particular core needs to pay attention to which core and
which socket the application receiving the data resides on.
It needs to steer the flow to a different core on the same
socket in order to optimize the protocol processing overhead
of the transfer.

There are many options for future research that we intend
to pursue. As mentioned above, our first priority is to ex-
plain the L3 cache hit ratio mismatch by running kernel-
introspective experiments. Also, we will be performing these
same experiments with Hyper-Threading turned on in order
to see the effect on priority and cache utilization. We would
also like to perform these experiments on different archi-

tectures, including architectures from other vendors. This
would allow us to gather data on the differences in high-
speed network performance between architectures. Further-
more, we will be performing these experiments with mul-
tiple 40 Gbps NICs, and therefore multiple flows. We will
also perform experiments that mix disk I/O activity, scien-
tific computing activity, and high-speed network transfers
to find optimal configurations using more practical bench-
marks. Another area of further research is to simulate dif-
ferent application characteristics, including short data trans-
fers and streaming data. Our overall goal is to develop a tool
based on our current introspective tools that will automati-
cally configure end-systems for optimal high-speed network
transfers.

7. ACKNOWLEDGEMENTS
This research used resources of the ESnet Testbed, which is
supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-05CH11231.

8. REFERENCES
[1] V. Ahuja, M. Farrens, and D. Ghosal. Cache-aware

affinitization on commodity multicores for high-speed
network flows. In Proceedings of the eighth ACM/IEEE
symposium on Architectures for networking and

0

5

10

15

20

25

30

35

40

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
M
or
e

Fr
eq

ue
nc

y

Throughput Bin (Gbps)

Throughput Histogram

Figure 6: Histogram of the different throughput values.

0

5

10

15

20

25

0.
48

0.
51

0.
54

0.
57 0.
6

0.
63

0.
66

0.
69

0.
72

0.
75

0.
78

0.
81

0.
84

0.
87 0.
9

Fr
eq

ue
nc

y

L3 Cache Hit Ratio Bin

L3 Cache Hit Ratio Histogram

Figure 7: Histogram of the different cache hit ratio values.

communications systems, pages 39–48. ACM, 2012.

[2] M. Balakrishnan. Reliable Communication for
Datacenters. PhD thesis, Cornell University, 2009.

[3] I. S. Bridge. Sandy bridge architecture,
http://en.wikipedia.org/wiki/SandyBridge/.

[4] A. Foong, J. Fung, D. Newell, S. Abraham, P. Irelan,
and A. Lopez-Estrada. Architectural characterization
of processor affinity in network processing. In
Performance Analysis of Systems and Software, 2005.
ISPASS 2005. IEEE International Symposium on,
pages 207–218. IEEE, 2005.

[5] T. Herbert. rfs: receive flow steering, september 2010.
http://lwn.net/Articles/381955/.

[6] T. Herbert. rps: receive packet steering, september
2010. http://lwn.net/Articles/361440/.

[7] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache
access for high bandwidth network i/o. In ACM
SIGARCH Computer Architecture News, volume 33,

pages 50–59. IEEE Computer Society, 2005.

[8] S. Jana, A. Pande, A. Chan, and P. Mohapatra.
Network characterization and perceptual evaluation of
skype mobile videos. In 22nd International Conference
on Computer Communications and Networks
(ICCCN), 2013.

[9] H. Jang and H. Jin. Miami: Multi-core aware
processor affinity for tcp/ip over multiple network
interfaces. In High Performance Interconnects, 2009.
HOTI 2009. 17th IEEE Symposium on, pages 73–82.
IEEE, 2009.

[10] A. Kumar, R. Huggahalli, and S. Makineni.
Characterization of direct cache access on multi-core
systems and 10gbe. In High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, pages 341 –352, feb.
2009.

[11] E. León, K. Ferreira, and A. Maccabe. Reducing the
impact of the memorywall for i/o using cache
injection. In High-Performance Interconnects, 2007.
HOTI 2007. 15th Annual IEEE Symposium on, pages
143–150. IEEE, 2007.

[12] E. León, R. Riesen, K. Ferreira, and A. Maccabe.
Cache injection for parallel applications. proc.
HDPC’11, pages 15–26, 2011.

[13] G. Liao, D. Guo, L. Bhuyan, and S. King. Software
techniques to improve virtualized i/o performance on
multi-core systems. In Proceedings of the 4th
ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, pages
161–170. ACM, 2008.

[14] G. Liao, X. Zhu, and L. Bnuyan. A new server i/o
architecture for high speed networks. In High
Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, pages
255–265. IEEE, 2011.

[15] T. Marian. Operating systems abstractions for software
packet processing in datacenters. PhD thesis, Cornell
University, 2011.

[16] T. Marian, D. Freedman, K. Birman, and
H. Weatherspoon. Empirical characterization of
uncongested optical lambda networks and 10gbe
commodity endpoints. In Dependable Systems and
Networks (DSN), 2010 IEEE/IFIP International
Conference on, pages 575–584. IEEE, 2010.

[17] J. Mogul and K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems (TOCS),
15(3):217–252, 1997.

[18] G. Narayanaswamy, P. Balaji, and W. Feng. Impact of
network sharing in multi-core architectures. In
Computer Communications and Networks, 2008.
ICCCN’08. Proceedings of 17th International
Conference on, pages 1–6. IEEE, 2008.

[19] E. S. Network. Esnet, http://www.es.net/.

[20] S. Networking. Eliminating the Receive Processing
Bottleneckâ Introducing RSS. Microsoft WinHEC
(April 2004), 2004.

[21] V. Omwando, A. Pande, Y. Zeng, and P. Mohapatra.
Evaluating perceptual video quality in 802.11n wlan
with mobile clients. In The 8th ACM International
Workshop on Wireless Network Testbeds,

Experimental Evaluation and Characterization (ACM
WiNTECH) 2013, pages –, 2013.

[22] A. Pande and J. Zambreno. Efficient translation of
algorithmic kernels on large-scale multi-cores. In
Computational Science and Engineering, 2009.
CSE’09. International Conference on, volume 2, pages
915–920. IEEE, 2009.

[23] RSS. Scaling in the Linux Networking Stack.
https://www.kernel.org/doc/Documentation/

networking/scaling.txt.

[24] J. Salim. When napi comes to town. In Linux 2005
Conf, 2005.

[25] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
Isostack: highly efficient network processing on
dedicated cores. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference,
USENIXATC’10, pages 5–5, Berkeley, CA, USA, 2010.
USENIX Association.

[26] SuperMicro. Supermicro x9dr3-f user’s
manual,http://www.supermicro.com/products/
motherboard/xeon/c600/x9dr3-f.cfm.

[27] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and
M. Bechler. The linux networking architecture. Design
and Implementation of Network Protocols in the Linux
Kernel, 2005.

[28] W. Wu, P. DeMar, and M. Crawford. A
transport-friendly nic for multicore/multiprocessor
systems. Parallel and Distributed Systems, IEEE
Transactions on, 23(4):607–615, 2012.

