
Protocols for Wide-Area Data-intensive
Applications: Design and Performance Issues

Yufei Ren, Tan Li, Dantong Yu,
Shudong Jin, Thomas Robertazzi

Department of Electrical and Computer Engineering
Stony Brook University

Stony Brook, NY, 11794, USA
Email: yufren@ic.sunysb.edu, tanli@ic.sunysb.edu, dtyu@bnl.gov,

shujin@notes.cc.sunysb.edu, tom@ece.sunysb.edu

Brian L. Tierney, Eric Pouyoul
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, CA, 94720, USA

Email: btierney@lbl.gov, epouyoul@lbl.gov

Abstract—Providing high-speed data transfer is vital to various
data-intensive applications. While there have been remarkable
technology advances to provide ultra-high-speed network band-
width, existing protocols and applications may not be able to
fully utilize the bare-metal bandwidth due to their ineffici ent
design. We identify the same problem remains in the field
of Remote Direct Memory Access (RDMA) networks. RDMA
offloads TCP/IP protocols to hardware devices. However, its
benefits have not been fully exploited due to the lack of efficient
software and application protocols, in particular in wide-area
networks. In this paper, we address the design choices to develop
such protocols. We describe a protocol implemented as part
of a communication middleware. The protocol has its flow
control, connection management, and task synchronization. It
maximizes the parallelism of RDMA operations. We demonstrate
its performance benefit on various local and wide-area testbeds,
including the DOE ANI testbed with RoCE links and InfiniBand
links.

I. I NTRODUCTION

Data-intensive applications such as those in the grid and
cloud computing environment are generating extremely high
volumes of data. Data is often transferred, visualized, and
analyzed by geographically distributed teams of users. High-
performance network capabilities must be available to support
these applications across both local and wide area networks.
The efficient design of network protocols and software systems
is a crucial aspect of research and development in data
intensive computing.

Protocol offload and hardware acceleration are among the
techniques used to achieve high data transfer rates with min-
imal consumption of host resources. The TCP/IP Offloading
Engine (TOE) is one of the early examples of protocol offload
to meet these requirements. Its underlying concept lies in the
use of a dedicated hardware module on the network adapter
card to process TCP/IP internal operations such as segmenting,
framing, reassembling the payload, timing, and flow control.
Research [1], [2] has demonstrated that TOE is a cost-effective
technique to free host processors from excessive protocol
processing, and therefore improves the concurrency between
communication and computation. Thereafter, Remote Direct
Memory Access (RDMA) was proposed as a hardware-based
Protocol Offload Engine (POE) solution to move bulk data

from the source host memory directly to the remote host’s
memory with kernel-bypass and zero-copy operations. Its use
has recently became popular in environments implementing
and utilizing converged Ethernet and data center bridging
technologies.

Along with assuring near line-speed data transfer, another
challenge is to manage a heterogeneity of underlying RDMA
architectures for diverse applications. Various RDMA imple-
mentations offer opportunities to enhance the performance
of a data transfer service, overcoming the limitations of a
kernel-based TCP/IP approach [3], [4]. However, despite of
the emergence of industry standards such as OpenFabrics
Enterprise Distribution (OFED) [5], it is still difficult for
applications to manage multiple devices.

In this paper, we study the issues related to designing a
high-speed network protocol and improving application perfor-
mance. In particular, we focus on Remote Direct Memory Ac-
cess (RDMA), and investigate the interaction between applica-
tion protocols/software and network hardware capabilities. We
designed an application layer protocol for RDMA networks,
as part of a middleware layer that integrates network access,
memory management, and multitasking. We address various
issues related to its efficient implementation such as buffer
management and memory registration, and the parallelization
of RDMA operations, all of which are vital to delivering
the benefits of RDMA to applications. Using this protocol,
we implemented an RDMA-based FTP software, RFTP. Our
developmental work is part of a larger project to exploit the
full capacity of a 100Gbps network in the U.S. Department of
Energy’s Energy Sciences Network (ESnet) [6].

The contributions of this paper encompass the following.
First, we validate our design choice for RDMA-based data
transfer protocols, and detail its performance benefits. Sec-
ond, we propose and discuss the implementation of our data
transfer protocol using OpenFabrics’s asynchronous RDMA
write, while maximizing the parallelism of data transmission.
Third, we describe our extensive experiments to evaluate
the performance of our protocol, particularly over wide-area
networks. We show that our tool has higher performance
compared with existing widely used data transfer tools such

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00c©2012 IEEE



as GridFTP [7].
The remainder of this paper is organized as follows. In

Section II we summarize previous work on RDMA tech-
nologies. In Section III we validate our design choices using
some preliminary performance tests. Section IV describes our
protocol design and implementation. Our experiments and
results are reported and analyzed in Section V, followed by
our conclusions.

II. RELATED WORK

The outstanding performance benefits of RDMA technology
for data center networks and high performance computing have
attracted a great deal of interest from academia and indus-
try. The original RDMA architecture, known as InfiniBand
(IB) [8], supports a top-down RDMA message service with
its own implementation of layer two to layer four protocol
(sometimes including layer-1) of the OSI stack. It provides
a message passing service to applications with all proto-
col processing operations offloaded to specialized hardware.
Unlike the best-effort frame delivery service in Ethernet,
the link layer of InfiniBand offers reliability and maintains
packet order through its credit-based flow control and virtual
lane mechanisms. However, extending IB on WAN requires
proprietary hardware to encapsulate IB into the Ethernet frame.
This limitation has prevented its wide adoption.

Two other implementations, Internet Wide Area RDMA
Protocol (iWARP) and RDMA over Converged Ethernet
(RoCE), were proposed to extend the advantages of RDMA
to ubiquitous IP/Ethernet-based networks and integrate the
traditional network structure with these advanced mechanisms.
iWARP offloads the whole TCP/IP stack. The Direct Data
Placement (DDP) layer of the iWARP stack implements and
supports zero-copy and kernel-bypass; it transfers data inthe
user-space buffer directly to application memory on the remote
server. iWARP enables RDMA to seamlessly run over best
effort IP networks such as the Internet. RoCE techniques
support the running of IB transport protocol over Ethernet
and offer the advantages of IB in an Ethernet environment.
Compared to iWARP, RoCE is a more natural extension of
message-based data transfer, and therefore, of the two, offers
better efficiency [9].

One objective of our design is to support applications across
all these RDMA architectures. We built our system with
the common Verb Application Programming Interface (API)
from the OpenFabrics Enterprise Distribution (OFED) [5], a
unified, cross-platform, transport-independent softwarestack
for RDMA. OFED offers a uniform application programming
interface, known as native IB verbs, to access various RDMA
architectures. Applications mainly use thelibibverbs and li-
brdmacmlibraries. Figure 1 shows the layered structure, with
applications at the top layer. OFED software also offers several
middleware packages, such as IP over IB [10] and Sockets
Direct Protocol (SDP) [11], to allow socket-based applica-
tions to run over RDMA devices without needed to rewrite
the program. The User Direct Access Programming Library
(uDAPL) [12] also has RDMA capabilities for applications,

Fig. 1. Applications over different RDMA protocols

and was used in other studies [13], [14]. Nevertheless, these
extensions introduce additional overhead and performance
penalties compared to the native RDMA IB verbs [15].

RDMA offers two message transfer semantics: Channel and
Memory. The former, SEND/RECEIVE, also referred to as a
two-sided operation in RDMA, where both the source and sink
kernels are involved in the data transfer once the connection
is established [16]. The communication channel between the
source and sink is modeled as queue pair (QP). Each QP
consists of one sender and one receiver queues, whilst each
queue represents one end of the channel. Before an application
uses RDMA to transfer data, the receiver posts a work request
to the receiver queue, after which the sender can post a work
request to the send queue. Both the sender and receiver will get
a completion event after the data transfer is finished. On the
other hand, the semantics of the RDMA READ/WRITE mode
is regarded as one-sided operation. The receiver advertises
its available registered memory to the sender, including the
information of memory region and the address, so that the
sender can directly use RDMA WRITE to write data into the
specified memory location within the receiver host.

Lai [15] implemented a RDMA FTP application based on
the two-sided zero-copy operation of IB networks. However,
SEND/RECEIVE operations originally were proposed for de-
livering control messages. The one-sided semantics of RDMA
READ/WRITE is a better choice for high-speed large-scale
data transfer because it can decouple the data transfer entirely
from the kernel software of the host operation system. Other
researchers [17], [18] demonstrated that even though there
are some benefits of using RDMA over LAN and WAN
with short latency, there are challenges in achieving good
performance in WAN with a long latency due to the problem
of its low performance with RDMA READ operation. Based
on these related works and their prior studies [16], [17], [18],
our middleware is designed to exploit the full benefit of the
RDMA by using RDMA WRITE operation yielding better
performance and lower communication cost for synchronizing



senders and receivers.
Tian et al. [19] has implemented a RDMA extension driver

for GridFTP to utilize the high network bandwidth provided
by InfiniBand. Similar to our approach, they employed RDMA
WRITE to transfer large blocks of data. However, their design
is not fully optimized. For example, the data source needs one
RTT to get credits (tokens for data transfer) from the remote
side’s buffer, a drawback that will slow down data transfer in
the wide area networks (WANs) with a large RTT. Moreover,
it is not clear how their protocol enforces flow control between
the two communicating parties, and whether it maximizes
the parallelism of RDMA operations. Subramoni [20] also
presented another driver to the GridFTP framework to merge
the capability of InfiniBand and GridFTP. RDMA technology
was extended and integrated into Message Passing Interface
(MPI) [21], [14], [22] to allow parallel applications to take
advantage of RDMA’s low latency and high performance
communication capability. However, its scalability and perfor-
mance are not yet tested and validated in the newly available
40Gbps InfiniBand and Ethernet network environments.

III. B ACKGROUND AND DESIGN CHOICES

Our objective is to design data transfer protocols that trans-
parently utilize the underlying RDMA network architecture,
and offer superior bandwidth performance. To that end, we
need to make intelligent decisions on the architecture of
software and the way to use RDMA semantics. In this section,
we describe our middleware architecture and validate our
choice on RDMA semantics.

A. Middleware overview and our contributions

In [23], we detailed our preliminary middleware implemen-
tation. In this paper, we elaborate upon the updated design
of the protocol and the implementation of the middleware
layer. The middleware layer lies between the applications and
RDMA network transport layer to meet our goal of creating
a generalized and common interface and architecture that
simplifies the process of developing various RDMA-based
applications. This middleware can take advantage of RDMA
techniques to attain high network throughput. It provides the
necessary data communication and access functions, while
maximizing the parallelism of data processing with advanced
features such as zero-copy, reuse of memory regions, multi-
stream parallel transfer, and multi-threading.

The middleware layer, as shown in Figure 2, implements a
set of function modules, and provides an abstraction of compu-
tational resources including main memory and network cards.
The middleware layer contains two primary components: the
data structure component keeps track of the data structures
necessary for data communication and memory access; the
other component offers a pool of threads with all the functional
modules related to data communication, synchronization, and
task scheduling. The threads handle data transfer and the
completion event (CE) asynchronously.

The middleware interacts with host computer adapters
(HCA) via an array of queue pairs, supported by the OFED

 

 

Threads Data Structure 

CQ QP-1 QP-2 QP-n 

Data Block List 

Receive Control 

Message List 

Send Control 

Message List 

Remote MR 

Info List 

application 

system 

 Queue Pair List 

 

Memory 

Sender 

CE dispatcher 

CE slave-n 

... 

CE slave-2 

CE slave-1 

Logger 

Hardware 

HCA 

Fig. 2. Multi-threaded architecture and data structure of RDMA-based
middleware

standard. The same standard also maintains a separate queue
and the completion queue (CQ). The threads in the middleware
layer gain access to the queue pairs and completion queue via
a standard programming interface.

B. RDMA semantics performance

The second design choice is that of RDMA semantics. In
making this decision, we considered various performance fac-
tors. To compare the performance of various RDMA channel
and memory semantics, we designed a RDMA I/O engine
and tested it with “fio” [24], an I/O benchmark and stress
test tool that offers flexible parameter settings and excellent
performance statistics reporting capabilities for both syn-
chronous and asynchronous I/O. Compared with the standard
OFED benchmark tools, our approach is easier to collect
comprehensive performance statistics from the I/O module,
including CPU usage, I/O latency, bandwidth, I/O performance
distribution, and so on. The RDMA engine uses asynchronous
I/O and allows our test program to simultaneously post mul-
tiple I/O requests. For both RDMA semantics (one-sided and
two-sided), we conducted a comprehensive set of test cases
with varying block sizes and maximum number of concurrent
blocks in flight (also called I/O depths).

With low I/O depth, as shown Figure 3(a) and Figure 4(a),
RDMA WRITE, RDMA READ and SEND/RECEIVE ex-
hibit similar performance, while the CPU consumption of
SEND/RECEIVE is much higher than that of the others. Its
high CPU consumption reflects the fact that SEND/RECEIVE
involves both the data source and sink during transfer, and the
sink must process the same number of RDMA events as the
source. However, RDMA READ/WRITE only handles RDMA
events at one end.

A high I/O depth improves bandwidth performance as



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 u

til
iz

at
io

n 
(%

)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(a) I/O depth is 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 u

til
iz

at
io

n 
(%

)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(b) I/O depth is 32

Fig. 3. RDMA semantics performance evaluation in RoCE Environment

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 u

til
iz

at
io

n 
(%

)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(a) I/O depth is 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 32 64 128
256

512
1024

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 u

til
iz

at
io

n 
(%

)

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

RDMA_WRITE CPU
RDMA_READ CPU
SEND/RECV CPU

RDMA_WRITE Bandwidth
RDMA_READ Bandwidth
SEND/RECV Bandwidth

(b) I/O depth is 32

Fig. 4. RDMA semantics performance evaluation in InfiniBandEnvironment

depicted in Figure 3(b) and Figure 4(b). To improve RDMA
performance, an application must post multiple I/O tasks
in flight to fully take advantage of OFED’s asynchronous
programming interface. Several observations resulted from
these experiments: 1) RDMA WRITE and SEND/RECEIVE
perform better than RDMA READ; 2) all test cases set block
size in the range from 16KB to 128KB to achieve the best
bandwidth; 3) performance saturates when the block size is
bigger than 128KB; 4) CPU usage decreases when the block
size increases because of fewer interrupts; and 5) during their
peak performance, the CPU usage of SEND/RECEIVE is
higher than that of RDMA WRITE.

Since the arrival rate of incoming data is unpredictable,
the data sink must pre-post sufficient registered buffers inthe
receive queue before the data source transfers data. Otherwise,
the data source may encounter the Receiver Not Ready (RNR)
error indicating that the data sink’s buffer is not available
for receiving data. Then, the source must pause, causing low
performance and under utilized network bandwidth. A control
message mechanism was introduced to avoid the RNR error in
Tian et. al.’s protocol implementation [19], where the source
must wait for credits piggybacked with the message from data
sink before it further posts more tasks into the send queue.

In summary, RDMA WRITE performs the best with the

least CPU consumption in all test cases, and I/O depth
should be set to a relatively large number, as identified in
the previous testing results. Therefore, we designed a hybrid
data transfer protocol that exchanges control messages via
SEND/RECEIVE, and transfers bulk of data via RDMA
WRITE.

IV. PROTOCOL DESIGN AND IMPLEMENTATION

A. Protocol Overview

The OFED standard supports two types of queue pairs
for host-to-host communication: Reliable Connected (RC) and
Unreliable Datagram (UD). Considering the requirements of
performanceand reliability, we selected RC queue pairs for
our protocol. The application can divide the entire datasetto
be transferred into large blocks, a feature that usually leads
to low processing overhead. On the other hand, the UD type
is supported only in channel semantics, and the block size is
limited by the size of the MTU [25]. A small block size may
incur high CPU consumption, since many small blocks trigger
a large number of queue pair events and interrupts that must
be handled at both the data source and sink.

In our protocol, we use one dedicated queue pair for
exchanging control messages between two communicating
parties, and one or more for actual data transfer. Figure 5



 

Process Load 

Data 

Data 

Source 

Data 

Sink 

Control Msg QP 

 

 

 

 

  

get_free_blk 
put_ready_blk put_free_blk 

get_ready_blk 

Bulk Data Transfer QPs 

Process 

Offload Data 

Fig. 5. Protocol Overview

illustrates how this protocol works. We use an event-driven
design where different types of control message or regular data
blocks trigger different events to be handled by pre-defined
event routines.

To fully utilize the RDMA technology, our protocol design
incorporates several optimizations. Firstly, the protocol keeps
multiple data blocks in flight during the entire data transfer
period. As we mentioned in the previous section, a high
queue depth with several data blocks in flight is the key to
achieving good performance. Secondly, the protocol is capable
of using parallel queue pairs to transfer multiple data blocks
simultaneously, eliminating the performance limitation of a
single queue pair. With multiple queue pairs, there is the
possibility of out-of-order arrivals of data blocks at the data
sink. The protocol implementation must therefore be able
to reassemble such out-of-order blocks. Thirdly, since the
protocol uses RDMA WRITE to deliver bulk user payload,
credits (tokens with destination address) are required before
transmitting the data. It takes one additional round trip time
(RTT) if the source explicitly requests credit informationfrom
the data sink. To save this RTT, our protocol adopts an active
feedback mechanism. The data sink will proactively send the
available data block information (credits) to the data source,
and the data source keep track of all available ones.

B. Finite State Machines Modeling

To better illustrate our protocol, we used a finite state
machine to model buffer blocks and their status at both the
data source and sink. In our data transfer protocol, unlike TCP
sockets, the sender does not explicitly copy data from user
space to kernel space. Instead, the sender only posts tasks via
the OFED interface, and afterwards the network card directly
retrieves data from user space. With this model, the finite state
machine of buffer blocks explains our protocol’s behavior.

In the data source, a block (a chunk of memory resource for
storing data) is initialized into a “free” state. A data transfer
application can reserve a free block byget_free_blk
which changes the state of the reserved block from “free” to
“loading”. The application then loads data from disk directly to
the memory block, and the state then changes from “loading”
to “loaded”. Before the actual data transfer, the data source
needs to know the remote memory’s information, such as the
unique identifier (rkey) and memory address of the data sink.
Afterwards, the source encapsulates the block informationinto

 

RDMA Write 

Operation failed 

Task post 

success 

put_free_blk 

RDMA Write 
Operation 
success 

Ready to send 

Task post failed 

Load data 
success 

Load data 
failed 

get_free_blk 

Loading 

Free 

Loaded Start Sending 

Waiting 

a) FSM of the data source 

get_ready_blk 
Offload data 

failed 

Data block transfer 
completion notification 

Memory 

semantic 

failed 

Request 

block 

notification 

Waiting 

Free 

Data Ready 

Offloading 

b) FSM of the data sink 

Fig. 6. User Payload Block’s Finite State Machine

a memory semantic task, and posts it into the send queue. The
state then changes from “Start sending” to “Waiting” if the
task is posted successfully. “Waiting” means the content ofthe
memory block is in flight. After the application polls the status
of the memory semantic operation, the state is changed to
“free” again if successful or “loaded” for re-sending if polling
fails.

A block’s state in the data sink finite state machine changes
from free into waiting once either of the following two kinds
of event is retrieved. One is a block request notification,
which means the data source runs out of credits and is eager
to get more credits as soon as possible. The other possible
event is a completion notification of another memory block,
which implies that the data source consumes one credit for
that block. For efficient data transfer, a proactive feedback
mechanism sends back one or two credits immediately to
avoid the source running out of credit. A finish notification
related to this block changes its state into “data ready”.
The application retrieves a block’s payload from the protocol
layer byget_ready_blk. After the application consumes
the block’s payload, i.e. offloading data into file system, the
block’s state is changed into “free” again byput_free_blk.

C. Connection Management and Message Format

As described in the previous subsection, the data source
and sink manage buffer blocks and transfer data using asyn-
chronous RDMA operations. Next, we detail connection man-
agement and message types during the process of moving data.

Each instance of data movement consists of three phases: (1)
Initialization and parameter negotiation; (2) data transfer and
reordering, and (3) connection teardown. Figure 7(a) shows
the format of the control message exchanged through the
dedicated control message queue pair, and Figure 7(b) shows
the format of the user payload data delivered through multiple
data channel queue pairs.



 

Event Type (16bits) 

Type Associated Data 

Session ID (32bits) 

Sequence Number (32bits) 

Offset (64bits) 

User Payload Length (32bits) 

Reserved 

Payload 

Response 

 
Associated Data Length (32bits) 

(b) 

(a) 

Fig. 7. Message Format of (a) Control message, and (b) User Payload Bulk
Data Block.

In the first phase before data transfer, the data source sends
requests to the sink to negotiate the block size, number of
data channel queue pairs, and session identifier for each data
transfer job.

• Block size negotiation:The data source selects a block
size based on the user’s input parameters, and copies the
size information to the field of “Type Associated Data”
of the control message to be sent to the sink. The sink
sends back a reply on whether or not it accepts the block
size for data transfer.

• Number of data channels negotiation:The protocol is
designed to support multiple data channels, even when
only transferring a single file. The source and the sink
will exchange messages to agree on and establish a user-
defined number of parallel queue pairs to deliver payload
data.

• Session identifier negotiation:Each data transfer job,
such as one file, is assigned a unique session identifier
before the data is transferred. This identifier is placed
into the header of every user payload block during the
transfer of data. The application probably issues multiple
data transfer tasks simultaneously. Each task is associated
with a global session identifier which is available in both
the source and sink. The sink is able to reassemble out-of-
order blocks and deliver an in-order sequence of blocks
to upper applications according to the session identifier
and sequence number.

Our protocol supports asynchronous data transfer using
OFED, viz., the key to enabling higher performance over the

traditional TCP-based approaches. The source posts multiple
payload data blocks in flight, and the sink actively acknowl-
edges the successful receipt of data and returns the available
memory region for the subsequent data transfer. There are
three types of control message in this phase.

• Memory Region (MR) block information request:
Once there is no available remote memory region for
storing data before transferring, the data source sends
this message to the data sink to request the next available
memory region. The source is blocked until the sink sends
back a response with MR information.

• Block transfer completion notification: The source
sends a completion notification to notify a data sink that
a data block is finished and available for the sink to read.
This notification includes the block’s ID and address,
allowing the data sink to extract the payload from the
memory block.

• Memory region block information response: The pre-
vious two types of control messages from the data source
trigger the sink to send back any available memory region
information. If the sink gets amemory region block
information request, this indicates the source is idle and
waiting for credits to proceed. The sink sends back one or
multiple available addresses information according to the
runtime status of the data transfer. If the sink gets ablock
transfer completion notification, the source must con-
sume an available data address, and the sink grants back,
at most, information on two available memory regions.
This results in an exponential increase in the number of
available remote MR in the data source at the beginning
of a data transfer session. Such a design is similar to
the slow start of TCP which allows the data transfer
protocol to quickly fill up the available bandwidth. If
at that time there is no available memory region in the
data sink, the completion notification is simply ignored
and the sink does not have to send a response. However,
for the memory region block information request, the
sink must send a response once there is at least one
available memory regions. Otherwise, the responder will
be delayed until one becomes available.

Finally, in the teardown phase, the source issues adata set
transfer completion message indicating that the whole data
set was transferred completely to the sink.

V. EXPERIMENTAL RESULTS

To validate our middleware and protocol and its reference
implementation, RFTP (RDMA-enabled FTP), we conducted
comprehensive experimental studies on several LAN and
WAN test environments. We begin this section describing
the test configuration based on various RDMA architectures,
including RoCE and InfiniBand, in LAN and WAN network
environments. We then compare the performance of RFTP
with GridFTP, a high performance data transfer tool widely
used in the data-intensive science applications.



TABLE I
TESTBEDDESCRIPTION

InfniBand
LAN

RoCE
LAN

RoCE
WAN

CPU * Cores

Intel Xeon
X5550

2.67GHz
8 Cores

Intel Xeon
X5650

2.67GHz
12 Cores

ANL: AMD
Opteron Processor

6140 2.6GHz
16 Cores

NERSC: Intel Xeon
E5530 2.40GHz

8 Cores

Mem(GBytes) 48 24
ANL: 64

NERSC: 24
NICs(Gbps) 40 40 10

OS RHEL 5.5 CentOS 6.2
ANL: CentOS 5.7

NERSC: CentOS 6.2

Kernel Version 2.6.18-238 2.6.32-220
ANL: 2.6.32-220

NERSC: 2.6.32.27

OFED Version 1.5.3.1
MLNX OFED

1.5.3 1.5.3

TCP Congestion
Control Algorithm cubic bic

ANL: cubic
NERSC:htcp

MTU Size 65520 9000 9000
RTT(ms) 0.013 0.025 49

A. Testbed Setup

We consider both memory-to-memory and memory-to-disk
data transfer between local and remote hosts. For the former,
memory data in the source is generated from /dev/zero, trans-
ferred via RDMA, and copied into /dev/null at the sink. In this
configuration, our focus is to evaluate the performance in terms
of network bandwidth and the efficacy of protocol offloading.
We did not access the performance of a test scenario with a
file system considered since it is much slowed than our 40
Gbps network testbed. For modern data center applications,
as suggested in [15], it is a reasonable simplification to avoid
the disk I/O bottleneck. We consider a variety of network
environments include the LAN (which plays a key role in
today’s data center and cloud computing applications) and the
WAN (which is essential to inter-data center transfers and to
upload or download data to remote clients). The details of our
three configurations are as follows.

1) High-bandwidth low-latency RoCE and InfiniBand
LANs: To test application performance over different RDMA
architectures, we set up two local-area test platforms. The
first one is a back-to-back connection testbed in Stony Brook
University. The propagation delay between hosts is less than
0.1ms. Each host is equipped with a 40Gbps RoCE HCA. The
second test platform includes two nodes at the NERSC Com-
putational Center. Each node has a Mellanox InfiniBand HCA
interconnected by a 4X QDR InfiniBand switch, theoretically
providing 32 Gb/s of point-to-point bandwidth. The vendor
reported that the actual bandwidth is about 25 Gbps during
their product validation.

2) High-bandwidth long-latency WAN RoCE Testbed:For
the WAN test with long-latency links, we used the Advanced
Networking Initiative (ANI) 100Gbps testbed1 between Ar-
gonne National Laboratory near Chicago, IL, and the National

1ANI Testbed: http://ani-testbed.lbl.gov/

Energy Research Scientific Computing Center (NERSC) in
Oakland, CA, about 2000 miles away. The hosts on the ANI
Testbed are equipped with a 10 Gbps RoCE NIC.

B. Parameter Configuration and Tuning

For a fair application comparison of these applications, we
ran our test cases of RFTP and GridFTP on the same set
of well-tuned hosts, and in a common network environment.
Table I lists the detailed configurations for all the nodes, in
all three testbeds described.

To improve the performance of TCP for transferring bulk
data, we tuned the parameters of O.S. kernel, NIC and the
host’s power setup according to the vendor supplied man-
ual [26]. For certain hosts in the testbeds, we employed some
variants of TCP algorithms. But we always evaluate RFTP and
GridFTP with the same TCP variants. The size of MTU was
set to 9000 bytes on all hosts.

We also have optimized the configuration of GridFTP to
ensure that it reached the best performance for network link
with a large bandwidth-delay product (BDP). The GridFTP
client, the globus-url-copy with extended block mode (MODE
E) [27] was utilized for all data transfer; authentication was
intentionally turned off to minimize the extra cost for data
security. Both the GridFTP client and server here are threaded
[28]. The size of TCP buffer is set to be the BDP of the link,
a proven value for the optimal network performance.

An important characteristic for GridFTP and RFTP is that
they can both transfer a large file via multiple streams. Since
there is no disk bottleneck in the memory-to-memory test, we
transferred one file in each test case to assess the impact of the
number of parallel streams. For the memory-to-disk test, we
created a group of 400GB files spread across multiple RAID
disks to achieve the best performance of the disk system.

C. Experimental Results over LAN

In this set of experiments, we used memory-to-memory data
transfer as the baseline results to compare the performances
of RFTP and GridFTP.

1) Bandwidth and CPU usage comparison over the RoCE
link: We consider the aggregate application bandwidth and
CPU utilization as the primary performance metrics. The
performance numbers obtained are as follows. For each test,
we transferred 900GB data with both GridFTP and RFTP. The
aggregate bandwidth was obtained by collecting the average
transfer performance of all streams. To calculate the CPU
usage, we employed the “nmon” [29] tool to record the CPU
utilization of the application during the entire transfer period,
and then determined the average usage. We note that if the host
has 12 cores, the total CPU utilization can be up to12×100%.

Figure 8 shows the bandwidth and CPU utilization per-
formance of GridFTP and RFTP over RoCE in LAN, with
different block sizes and numbers of streams. We made the
following observations:

• RFTP saturates the bare-metal bandwidth with different
block sizes while CPU utilization declines as the block
size increases. Block sizes play an important role in



 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(a) Bandwidth Comparison with 1 stream

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n 
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(b) CPU Utilization Comparison with 1 stream

 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(c) Bandwidth Comparison with 8 streams

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n 
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(d) CPU Utilization Comparison with 8 streams

Fig. 8. Bandwidth and CPU Utilization comparison between GridFTP and RFTP over RoCE in LAN

reducing the CPU load, since the number of control
messages and CPU interruptions are fewer with larger
blocks.

• Although the data transfer application can load data from
/dev/zero with a high throughput it generates excessive
CPU load to reset the memory content with0x00s. We
monitored the CPU usage of the data loading thread using
the “top” tool, finding that loading data from /dev/zero at
25Gbps leads to a50% utilization of one core. According
to Amdahl’s law, the improvement to CPU utilization will
be limited if loading data consumes a dominant share of
the application’s CPU usage. This is the case when the
block size exceeds a certain threshold; for example, CPU
utilization does not improve further when the block size
is increased from 4MB to 64MB.

• A single GridFTP runtime process cannot archive bare-
metal bandwidth, even with multiple streams or large
block sizes. After we used the application debug tool
“strace” to capture the underlying software behavior of
the GridFTP application, we found that GridFTP only
used a single thread to handle regular file operations,
such as reading and writing data, and also network
events, such as multiplexing, sending and receiving data.
Consequently, good performance was not achieved once
a single CPU became the bottleneck. As shown in
Figure 8, both the GridFTP client and server always
consume more than100% of the CPU resource in a high
bandwidth network environment. Furthermore, GridFTP’s

performance will be limited by a single core, while
RFTP can take advantage of multi-core combined with
multi-thread architecture simultaneously to handle more
network events for a better transfer performance.

2) Comparison of Bandwidth and CPU usage with the
InfiniBand link: Figure 9 compares the bandwidth and CPU
utilization between GridFTP and RFTP in the LAN environ-
ment with a 40Gbps InfiniBand link. We ran RFTP with one
stream and eight streams. We also tested GridFTP with a
single TCP connection and eight parallel connections. RFTP
consistently outperforms GridFTP and attains high bandwidth
in this setting. We also note that with RFTP, the bare-
metal bandwidth is almost fully utilized when block size is
sufficiently large, for example, 512K bytes. The bare-metal
bandwidth is limited by the eight-lane PCI 2.0 (Peripheral
Component Interconnect) network adapter.

The observations in the previous section also are applicable
in the InfiniBand environment. In addition, we made two more
observations. First, compared with the results from the RoCE
environment, the RFTP consumes less CPU in the InfiniBand
environment. The reason is thatlibibverbshas lower overhead
in the latter environment than that in the former one. Second,
GridFTP’s bandwidth performance fluctuates at different block
sizes. This instability again might reflect GridFTP’s single
thread, and CPU power must be split between loading file
data and network operations.



 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(a) Bandwidth Comparison with 1 stream

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n 
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(b) CPU Utilization Comparison with 1 stream

 0

 5

 10

 15

 20

 25

 30

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(c) Bandwidth Comparison with 8 streams

 0

 20

 40

 60

 80

 100

 120

 140

 160

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n 
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(d) CPU Utilization Comparison with 8 streams

Fig. 9. Bandwidth and CPU Utilization comparison between GridFTP and RFTP over InfiniBand in LAN

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(a) Bandwidth Comparison with 1 stream

 0

 20

 40

 60

 80

 100

 120

 140

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n 
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(b) CPU Utilization Comparison with 1 stream

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

B
an

dw
id

th
(G

bp
s)

Block Size

RFTP GridFTP

(c) Bandwidth Comparison with 8 streams

 0

 20

 40

 60

 80

 100

 120

 140

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

C
P

U
 u

til
iz

at
io

n 
(%

)

Block Size

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

(d) CPU Utilization Comparison with 8 streams

Fig. 10. Bandwidth and CPU comparison between GridFTP and RFTP over RoCE in WAN



 0

 20

 40

 60

 80

 100

256KB 1MB 4MB 16MB 64MB
 0

 5

 10

 15

 20

C
P

U
 u

til
iz

at
io

n 
(%

)

B
an

dw
id

th
 (

G
bp

s)

Block Size

RFTP Server CPU Usage (/dev/null)
RFTP Server CPU Usage (Disk)

RFTP Bandwidth (/dev/null)
RFTP Bandwidth (Disk)

Fig. 11. RFTP Bandwidth and CPU utilization comparison between Memory-
to-Memory and Memory-to-Disk

D. Experimental Results over the WAN link

We ran RFTP and GridFTP over the long-haul WAN RoCE
link in the ANI testbed (the DOE’s Advanced Network Ini-
tiative). In this set of experiments, we used both memory-
to-memory and memory-to-disk data transfer to demonstrate
the efficacy of our protocol design. Figure 10 compared the
bandwidth and CPU utilization with one stream and eight
streams. In most cases, RFTP again outperforms GridFTP in
getting full bare-metal bandwidth with lower CPU utilization.
The reason for bandwidth fluctuation of GridFTP is the same
as we discussed in the previous subsection.

Figure 11 shows the bandwidth and CPU utilization of the
RFTP server in the memory-to-memory and memory-to-disk
test cases. We enabled the direct I/O feature of RFTP to save
CPU usage and accelerate the RAID disk performance. To
the best of our knowledge, GridFTP has not yet integrated
direct I/O. Since writing data to disks with standard POSIX
I/O consumes much more CPU time than direct I/O, GridFTP’s
performance is not comparable with RFTP using direct I/O.
This figure shows that RFTP maintains the same bandwidth
performance between memory and disk tests, with slightly
higher CPU usage at the RFTP server since moving data
into disk is more CPU intensive than simply writing into
/dev/null. Hence, the design of our protocol and application
are flexible in various testbed environments, including with
disk operations.

VI. CONCLUSIONS

RDMA is known as a promising high-performance protocol
offload technique that supports zero-copy and kernel bypass.
Several factors limit the use of RDMA techniques, including
the lack of middleware support to RDMA hardware and the
lack of efficient protocols to fully utilize the available network
bandwidth. In this paper, we described our study of the design
and performance issues of data transfer tools for high-speed
networks such as 40 Gbps Ethernet and InfiniBand. Our work
provides an RDMA-based middleware layer that provides sim-
ple resource abstraction and management, task scheduling,and
parallel data transfer. Based on this middleware, we designed

a data transfer protocol that supports high performance flow
control and parallel data transfer.

To demonstrate the efficiency of our protocol and software
design, we developed a reference implementation for the
proposed FTP protocol. We set up testbeds with various
RDMA technologies in various network environments to cover
many different real-life data transfer scenarios. In particular,
we demonstrated the performance of our protocol over the
Department of Energy’s ANI Testbed that includes multiple
10Gbps RoCE links over a 2000 mile path. The experiments
show that our protocol and its intelligent design achieved
remarkable bandwidth performance and fully maximized the
RDMA hardware capacities.

ACKNOWLEDGMENTS

The authors are grateful to the facility and hardware dona-
tion of Mellanox Technologies, Inc. and Fusion-io, Inc. The
authors have benefited from numerous technical discussions
with Gilad Shainer, Roi Dayan, Erin Filliater, Yaron Haviv,
Bill Lee, Dudu Slama, and Todd Wilde, from Mellanox,
Paul Grun and David McMillen from System Fabric Works,
Inc., Ezra Kissel and Martin Swany from Indiana University,
and David Strohmeyer from Intel. This research is supported
by United States Department of Energy, Grant No. DE-
SC0003361. The ESnet Advanced Network Initiative (ANI)
Testbed, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
05CH11231. Both contracts are funded through the The Amer-
ican Recovery and Reinvestment Act of 2009.

REFERENCES

[1] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda,“Perfor-
mance characterization of a 10-Gigabit ethernet TOE,” inProceedings
of 13th Symposium on High Performance Interconnects (HOTI), August
2005.

[2] H. Jang, S.-H. Chung, and D.-H. Yoo, “Implementation of an efficient
RDMA mechanism tightly coupled with a TCP/IP offload engine,”
in Proceedings of International Symposium on Industrial Embedded
Systems (SIES), June 2008.

[3] N. Bierbaum, “MPI and embedded TCP/IP Gigabit Ethernet cluster
computing,” inProceedings of 27th Annual IEEE Conference on Local
Computer Networks, Tampa, Florida, USA, November 2002, pp. 733–
734.

[4] E. Yeh, H. Chao, V. Mannem, J. Gervais, and B. Booth, “Introduction to
TCP/IP Offload Engine (TOE),”10 Gigabit Ethernet Alliance (10GEA),
October 2002.

[5] OpenFabrics, “OpenFabrics Alliance: http://www.openfabrics.org/,”
2012.

[6] ESnet, “Energy Sciences Network: http://www.es.net/,” 2012.
[7] Globus Group, “GridFTP online page:

http://www.globus.org/toolkit/docs/latest-stable/gridftp/,” 2012.
[8] InfiniBand Trade Association, “InfiniBand ArchitectureSpecification,”

Release 1.2.1, 2006.
[9] D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause,R. Recio,

D. Crupnicoff, L. Dickman, and P. Grun, “Remote Direct Memory
Access over the Converged Enhanced Ethernet fabric: Evaluating the
options,” in 2009 17th IEEE Symposium on High Performance Inter-
connects (HOTI), 2009, pp. 123–130.

[10] The Internet Engineering Task Force (IETF), “RFC 4392 -IP over
InfiniBand (IPoIB) Architecture,” April 2006.

[11] IBTA, “Infiniband Trade Association. http://www.infinibandta.org/,”
2010.

[12] D. Collaborative, “uDAPL: User Direct Access Programming Library.
http://www.datcollaborative.org/udapldoc 062102.pdf,” June 2002.



[13] A. Danalis, A. Brown, L. Pollock, and M. Swany, “Introducing gravel:
An MPI companion library,” in Proceedings of IEEE International
Symposium of Parallel and Distributed Processing (IPDPS), Miami,
Florida USA, April 2008.

[14] A. Danalis, A. Brown, L. Pollock, M. Swany, and J. Cavazos, “Gravel:
A communication library to fast path MPI,” inEuro PVM/MPI 2008,
October 2008.

[15] P. Lai, H. Subramoni, S. Narravula, A. Mamidala, and D. K. Panda,
“Designing efficient FTP mechanisms for high performance data-transfer
over InfiniBand,” inProceedings of International Conference on Parallel
Processing (ICPP), September 2009.

[16] P. W. Frey and G. Alonso, “Minimizing the hidden cost of RDMA,” in
Proceedings of IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), June 2009.

[17] N. S. V. Rao, W. Yu, W. R. Wing, S. W. Poole, and J. S. Vetter, “Wide-
area performance profiling of 10GigE and InfiniBand technologies,” in
Proceedings of International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), November 2008.

[18] W. Yu, N. S. Rao, P. Wyckoff, and J. S. Vette, “Performance of RDMA-
capable storage protocols on wide-area network,” inProceedings of
Petascale Data Storage Workshop, November 2008.

[19] Y. Tian, W. Yu, and J. Vetter, “Rxio: Design and implementation of high
performance rdma-capable gridftp,” 2011.

[20] H. Subramoni, P. Lai, R. Kettimuthu, and D. K. Panda, “High perfor-
mance data transfer in grid environment using gridftp over infiniband,”
in Int’l Symposium on Cluster Computing and the Grid (CCGrid), May
2010.

[21] M. Luo, S. Potluri, P. Lai, Emilio, P. Mancini, H. Subramoni, K. C.
Kandalla, S. Sur, and D. K. Panda, “High performance design and
implementation of nemesis communication layer for two-sided and one-
sided mpi semantics in mvapich,” inICPPW ’10 Proceedings of the
2010 39th International Conference on Parallel ProcessingWorkshops,
2010.

[22] H. Subramoni, P. Lai, M. Luo, and D. K. Panda, “RDMA over Ethernet:
A preliminary study,” inProceedings of Cluster Computing Workshops,
CLUSTER’09, August 2009.

[23] Y. Ren, T. Li, D. Yu, S. Jin, and T. Robertazzi, “Middleware support
for rdma-based data transfer in cloud computing,” inProceedings of
High-Performance Grid and Cloud Computing Workshop, May 2012.

[24] J. Axboe, “Flexible I/O Tester: http://freecode.com/projects/fio.”
[25] Mellanox, “Rdma aware networks programming user manual,” Jan 2010.
[26] “Performance tuning guidelines for mellanox network adapters,” March

2012.
[27] Globus Group, “GT 4.0 GridFTP Glossary:

http://www.globus.org/toolkit/docs/4.0/data/gridftp/gridftp glossary.html,”
2012.

[28] Globus Developer Group, “GridFTP Threaded Flavors:
http://www.globus.org/toolkit/docs/5.0/5.0.0/data/gridftp/admin/,”
2012.

[29] N. Griffiths, “nmon performance: A free tool to analyze AIX and
Linux performance: http://www.ibm.com/developerworks/aix/library/au-
analyze aix/.”


