Menu

Dale Carder

Dale Carder
Dale W. Carder
Network Engineer
Network Engineering Group

Dale W. Carder is a Network Engineer at Lawrence Berkeley National Laboratory working on the Energy Sciences Network (ESnet). He builds large-scale, resilient, next-generation long-haul networks for International science projects such as the Large Hadron Collider (LHC) and the FABRIC testbed. His expertise lies in the areas of dynamic provisioning, global traffic engineering and control frameworks. He comfortably works at the intersection of software, network, compute, application workflows, and systems engineering.

Journal Articles

Garhan Attebury, Marian Babik, Dale Carder, Tim Chown, Andrew Hanushevsky, Bruno Hoeft, Andrew Lake, Michael Lambert, James Letts, Shawn McKee, Karl Newell, Tristan Sullivan, “Identifying and Understanding Scientific Network Flows”, 26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023), May 2023,

The High-Energy Physics (HEP) and Worldwide LHC Computing Grid (WLCG) communities have faced significant challenges in understanding their global network flows across the world’s research and education (R&E) networks. This article describes the status of the work carried out to tackle this challenge by the Research Technical Networking Working Group (RNTWG) and the Scientific Network Tags (Scitags) initiative, including the evolving framework and tools, as well as our plans to improve network visibility before the next WLCG Network Data Challenge in early 2024. The Scitags initiative is a long-term effort to improve the visibility and management of network traffic for data-intensive sciences. The efforts of the RNTWG and Scitags initiatives have created a set of tools, standards, and proof-of-concept demonstrators that show the feasibility of identifying the owner (community) and purpose (activity) of network traffic anywhere in the network.

W Bhimji, D Carder, E Dart, J Duarte, I Fisk, R Gardner, C Guok, B Jayatilaka, T Lehman, M Lin, C Maltzahn, S McKee, MS Neubauer, O Rind, O Shadura, NV Tran, P van Gemmeren, G Watts, BA Weaver, F Würthwein, “Snowmass 2021 Computational Frontier CompF4 Topical Group Report Storage and Processing Resource Access”, Computing and Software for Big Science, April 2023, 7,

The Snowmass 2021 CompF4 topical group’s scope is facilities R&D, where we consider “facilities” as the hardware and software infrastructure inside the data centers plus the networking between data centers, irrespective of who owns them, and what policies are applied for using them. In other words, it includes commercial clouds, federally funded High Performance Computing (HPC) systems for all of science, and systems funded explicitly for a given experimental or theoretical program. However, we explicitly consider any data centers that are integrated into data acquisition systems or trigger of the experiments out of scope here. Those systems tend to have requirements that are quite distinct from the data center functionality required for “offline” processing and storage.

Yatish Kumar, Stacey Sheldon, Dale Carder, “Transport Layer Networking”, arXiv preprint, April 2022,

In this paper we focus on the invention of new network forwarding behaviors between network Layers 4 and Layer 7 in the OSI network model. Our design goal is to propose no changes to L3 - The IP network layer, thus maintaining 100% compatibility with the existing internet. Small changes are made to L4 the transport layer, and a new design for a session ( L5 ) is proposed. This new capability is intended to have minimal or no impact on the application layer, except for exposing the ability for L7 to select this new mode of data transfer or not. The invention of new networking technologies is frequently done in an academic setting, however the design needs to be constrained by practical considerations for cost, operational feasibility, robustness and scale. Our goal is to improve the production data infrastructure for HEP 24/7 on a global scale.

Presentation/Talks

Dale W. Carder, Minding our MANRS at ESnet, Internet2 Tech Exchange 2023, September 21, 2023,

Dale W. Carder, R&E Upgrades for HL-LHC, Internet2 Tech Exchange 2023, September 20, 2023,

Dale W. Carder, Tim Chown, Shawn McKee, Marian Babik, Use of the IPv6 Flow Label for WLCG Packet Marking, IETF 117, July 25, 2023,

Dale W. Carder, Innovating on Control Planes, 10th SIG-NGN Meeting, November 29, 2022,

Reports

Jason Zurawski, Dale Carder, Eric Colby, Eli Dart, Carol Hawk, Ken Miller, Abid Patwa, Kate Robinson, Andrew Wiedlea, “High Energy Physics Network Requirements Review: Two-Year Update”, Report, July 26, 2024, LBNL LBNL-2001605

The Energy Sciences Network (ESnet) is the high-performance network user facility for the US Department of Energy (DOE) Office of Science (SC) and delivers highly reliable data transport capabilities optimized for the requirements of data-intensive science. In essence, ESnet is the circulatory system that enables the DOE science mission by connecting all its laboratories and facilities in the US and abroad. ESnet is funded and stewarded by the Advanced Scientific Computing Research (ASCR) program and managed and operated by the Scientific Networking Division at Lawrence Berkeley National Laboratory (LBNL). ESnet is widely regarded as a global leader in the research and education networking community.

ESnet interconnects DOE national laboratories, user facilities, and major experiments so that scientists can use remote instruments and computing resources as well as share data with collaborators, transfer large datasets, and access distributed data repositories. ESnet is specifically built to provide a range of network services tailored to meet the unique requirements of the DOE’s data-intensive science.

In July 2023, the Energy Sciences Network (ESnet) and the High Energy Physics program (HEP) of the DOE SC organized an interim ESnet requirements review of HEP-supported activities, to follow up on the work started during the 2020 HEP Network Requirements Review. Preparation for these events included checking back with the key stakeholders: program and facility management, research groups, and technology providers. Each stakeholder group was asked to prepare updates to their previously submitted case study documents, so that ESnet could update the understanding of any changes to the current, near-term, and long-term status, expectations, and processes that will support the science activities of the program.

J. Zurawski, D. Carder, E. Dart, K. Robinson, “Evaluating and improving network performance to support high energy physics with ESnet”, Quilt Circle, May 1, 2023,

Jason Zurawski, Ben Brown, Dale Carder, Eric Colby, Eli Dart, Ken Miller, Abid Patwa, Kate Robinson, Andrew Wiedlea, “High Energy Physics Network Requirements Review: One-Year Update”, ESnet Network Requirements Review, December 22, 2022, LBNL LBNL-2001492

The Energy Sciences Network (ESnet) is the high-performance network user facility for the US Department of Energy​ (DOE) ​Office​ of​ Science​ (SC)​ and​ delivers​ highly​ reliable​ data​transport ​capabilities​ optimized​ for ​the​ requirements of data-intensive science. In essence, ESnet is the circulatory system that enables the DOE science mission by connecting all of its laboratories and facilities in the United States and abroad. ESnet is funded and stewarded​ by​ the​ Advanced​ Scientific ​Computing​ Research​ (ASCR)​ program​ and​ managed​ and​operated​ by​ the​ Scientific ​Networking​ Division​ at ​Lawrence​ Berkeley ​National​ Laboratory​ (LBNL). ​ESnet ​is ​widely​ regarded​ as​ a global leader in the research and education networking community.

In April 2022, ESnet and the Office of High Energy Physics (HEP) of the DOE SC organized an ESnet requirements review of HEP-supported activities. Preparation for the review included identification of key stakeholders: program and facility management, research groups, and technology providers. Each stakeholder group was asked to prepare formal case study documents about the group’s relationship to the HEP program to build a complete understanding of the current, near-term, and long-term status, expectations, and processes that will support the science going forward. A series of pre-planning meetings better prepared case study authors for this task, along with guidance on how the review would proceed in a virtual fashion.

ESnet and ASCR use requirements reviews to discuss and analyze current and planned science use cases and anticipated data output of a particular program, user facility, or project to inform ESnet’s strategic planning, including network operations, capacity upgrades, and other service investments. A requirements review comprehensively surveys major science stakeholders’ plans and processes in order to investigate data management requirements over the next 5–10 years.

Jason Zurawski,Dale Carder,Matthias Graf,Carol Hawk,Aaron Holder,Dylan Jacob,Eliane Lessner,Ken Miller,Cody Rotermund,Thomas Russell,Athena Sefat,Andrew Wiedlea, “2022 Basic Energy Sciences Network Requirements Review Final Report”, Report, December 2, 2022, LBNL LBNL-2001490

The Energy Sciences Network (ESnet) is the high-performance network user facility for the US Department of Energy (DOE) Office of Science (SC) and delivers highly reliable data transport capabilities optimized for the requirements of data-intensive science. In essence, ESnet is the circulatory system that enables the DOE science mission by connecting all of its laboratories and facilities in the US and abroad. ESnet is funded and stewardedby the Advanced Scientific Computing Research (ASCR) program and managed and operated by the Scientific Networking Division at Lawrence Berkeley National Laboratory (LBNL). ESnet is widely regarded as a global leader in the research and education networking community.

Between March and September 2022, ESnet and the Office of Basic Energy Sciences (BES) of the DOE SC organized an ESnet requirements review of BES-supported activities. Preparation for these events included identification of key stakeholders: program and facility management, research groups, and technology providers. Each stakeholder group was asked to prepare formal case study documents about its relationship to the BES program to build a complete understanding of the current, near-term, and long-term status, expectations, and processes that will support the science going forward.

Jason Zurawski, Ben Brown, Dale Carder, Eric Colby, Eli Dart, Ken Miller, Abid Patwa, Kate Robinson, Lauren Rotman, Andrew Wiedlea, “2020 High Energy Physics Network Requirements Review Final Report”, ESnet Network Requirements Review, June 29, 2021, LBNL LBNL-2001398

The Energy Sciences Network (ESnet) is the high-performance network user facility for the US Department of Energy​ (DOE) ​Office​ of​ Science​ (SC)​ and​ delivers​ highly​ reliable​ data​transport ​capabilities​ optimized​ for ​the​ requirements of data-intensive science. In essence, ESnet is the circulatory system that enables the DOE science mission by connecting all of its laboratories and facilities in the United States and abroad. ESnet is funded and stewarded​ by​ the​ Advanced​ Scientific ​Computing​ Research​ (ASCR)​ program​ and​ managed​ and​operated​ by​ the​ Scientific ​Networking​ Division​ at ​Lawrence​ Berkeley ​National​ Laboratory​ (LBNL). ​ESnet ​is ​widely​ regarded​ as​ a global leader in the research and education networking community.

Throughout ​2020,​ESnet​ and​ the ​Office ​of ​High ​Energy​ Physics​ (HEP)​ of ​the ​DOE​ SC​ organized​ an​ ESnet​ requirements ​review​ of ​HEP-supported​ activities.​ Preparation ​for ​this​ event​included​ identification ​of​ key​ stakeholders: program and facility management, research groups, technology providers, and a number of external observers. These individuals were asked to prepare formal case study documents about their relationship to the HEP program to build a complete understanding of the current, near-term, and long-term status, expectations, and processes that will support the science going forward. A series of pre-planning meetings better prepared case study authors for this task, along with guidance on how the review would proceed in a virtual fashion.

ESnet and ASCR use requirements reviews to discuss and analyze current and planned science use cases and anticipated data output of a particular program, user facility, or project to inform ESnet’s strategic planning, including network operations, capacity upgrades, and other service investments. A requirements review comprehensively surveys major science stakeholders’ plans and processes in order to investigate data management requirements over the next 5–10 years.

Others

Dale W. Carder, Tim Chown, Shawn McKee, Marian Babik, Use of the IPv6 Flow Label for WLCG Packet Marking, IETF Internet-Draft, 2023,

   This document describes an experimentally deployed approach currently
   used within the Worldwide Large Hadron Collider Computing Grid (WLCG)
   to mark packets with their project (experiment) and application.  The
   marking uses the 20-bit IPv6 Flow Label in each packet, with 15 bits
   used for semantics (community and activity) and 5 bits for entropy.
   Alternatives, in particular use of IPv6 Extension Headers (EH), were
   considered but found to not be practical.  The WLCG is one of the
   largest worldwide research communities and has adopted IPv6 heavily
   for movement of many hundreds of PB of data annually, with the
   ultimate goal of running IPv6 only.